{"title":"Short-term climatic oscillations versus long-term delta propagation: Controls on sand transport into the deep Levant Basin since the Pliocene","authors":"Ido Sirota, Yoav Ben Dor, Zohar Gvirtzman","doi":"10.1111/bre.12892","DOIUrl":null,"url":null,"abstract":"<p>Sand transport and its deposition in deep marine basins are controlled by diverse climatic, tectonic, physiographic and oceanographic processes. Disentangling the impact of each of these drivers on the sedimentary record is a fundamental challenge in the study of source to sink systems. In this study, we investigate seismic and borehole data by combining statistical and spectral analyses to identify the factors controlling sand deposition in the deep Levant Basin (Eastern Mediterranean) during the Pliocene–Quaternary (PQ). We interpret the sand content in boreholes from gamma ray (GR) logs and identify two major trends in sand/shale ratios. On a million-year scale, we demonstrate that since the Early Pliocene (5.3 Ma), sand content gradually increased until it formed a ca. 100 m thick and widespread sheet of sand at the top of the section. On a shorter time scale, we identify oscillations in sand content depicting significant power of periodic components at the 350–450 ky, 90–150 ky and 10s ky bands. The long-term increase in sand content reaching the deep Levant Basin is interpreted as a result of the Nile Delta propagation, which had continuously shortened the distance between the edge of the Nile delta that is the source of sand, and the deep Levant Basin. The superimposed short-term oscillations are interpreted as Milanković cycles, reflecting hydroclimatic oscillations of water and sediment discharge into the Eastern Mediterranean Sea by the Nile River. This demonstrates the hydroclimatic control on sand deposition in the deep Levant Basin. Our observations are consistent with the development of a submarine channel system along with the accretion of the Nile delta, which may have served as a pathway for sand delivery via high-energy turbidity currents that reached the Levant Basin.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12892","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12892","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sand transport and its deposition in deep marine basins are controlled by diverse climatic, tectonic, physiographic and oceanographic processes. Disentangling the impact of each of these drivers on the sedimentary record is a fundamental challenge in the study of source to sink systems. In this study, we investigate seismic and borehole data by combining statistical and spectral analyses to identify the factors controlling sand deposition in the deep Levant Basin (Eastern Mediterranean) during the Pliocene–Quaternary (PQ). We interpret the sand content in boreholes from gamma ray (GR) logs and identify two major trends in sand/shale ratios. On a million-year scale, we demonstrate that since the Early Pliocene (5.3 Ma), sand content gradually increased until it formed a ca. 100 m thick and widespread sheet of sand at the top of the section. On a shorter time scale, we identify oscillations in sand content depicting significant power of periodic components at the 350–450 ky, 90–150 ky and 10s ky bands. The long-term increase in sand content reaching the deep Levant Basin is interpreted as a result of the Nile Delta propagation, which had continuously shortened the distance between the edge of the Nile delta that is the source of sand, and the deep Levant Basin. The superimposed short-term oscillations are interpreted as Milanković cycles, reflecting hydroclimatic oscillations of water and sediment discharge into the Eastern Mediterranean Sea by the Nile River. This demonstrates the hydroclimatic control on sand deposition in the deep Levant Basin. Our observations are consistent with the development of a submarine channel system along with the accretion of the Nile delta, which may have served as a pathway for sand delivery via high-energy turbidity currents that reached the Levant Basin.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.