Tiziana Fidecicchi , Andrea Giannini , Peter Chedraui , Stefano Luisi , Christian Battipaglia , Andrea R. Genazzani , Alessandro D. Genazzani , Tommaso Simoncini
{"title":"Neuroendocrine mechanisms of mood disorders during menopause transition: A narrative review and future perspectives","authors":"Tiziana Fidecicchi , Andrea Giannini , Peter Chedraui , Stefano Luisi , Christian Battipaglia , Andrea R. Genazzani , Alessandro D. Genazzani , Tommaso Simoncini","doi":"10.1016/j.maturitas.2024.108087","DOIUrl":null,"url":null,"abstract":"<div><p>The menopause transition is an important period in a woman's life, during which she is at an increased risk of mood disorders. Estrogen and progesterone fluctuations during the menopausal transition and very low levels of estradiol after menopause have a profound effect on the central nervous system (CNS), causing an imbalance between excitatory and inhibitory inputs. Changes in neurotransmission and neuronal interactions that occur with estradiol withdrawal disrupt the normal neurological balance and may be associated with menopausal symptoms. Hot flushes, depressed mood and anxiety are all symptoms of menopause that are a consequence of the complex changes that occur in the CNS, involving many signaling pathways and neurotransmitters (i.e. γ-aminobutyric acid, serotonin, dopamine), neurosteroids (i.e. allopregnanolone), and neuropeptides (i.e. kisspeptin, neurokinin B). All these pathways are closely linked, and the complex interactions that exist are not yet fully understood. This review summarizes the neuroendocrine changes in the CNS during the menopausal transition, with particular emphasis on those that underlie mood changes.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378512224001828","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The menopause transition is an important period in a woman's life, during which she is at an increased risk of mood disorders. Estrogen and progesterone fluctuations during the menopausal transition and very low levels of estradiol after menopause have a profound effect on the central nervous system (CNS), causing an imbalance between excitatory and inhibitory inputs. Changes in neurotransmission and neuronal interactions that occur with estradiol withdrawal disrupt the normal neurological balance and may be associated with menopausal symptoms. Hot flushes, depressed mood and anxiety are all symptoms of menopause that are a consequence of the complex changes that occur in the CNS, involving many signaling pathways and neurotransmitters (i.e. γ-aminobutyric acid, serotonin, dopamine), neurosteroids (i.e. allopregnanolone), and neuropeptides (i.e. kisspeptin, neurokinin B). All these pathways are closely linked, and the complex interactions that exist are not yet fully understood. This review summarizes the neuroendocrine changes in the CNS during the menopausal transition, with particular emphasis on those that underlie mood changes.