A 2m-Range 711μW Body Channel Communication Transceiver Featuring Dynamically-Sampling Bias-Free Interface Front End

Guanjie Gu;Changgui Yang;Jian Zhao;Sijun Du;Yuxuan Luo;Bo Zhao
{"title":"A 2m-Range 711μW Body Channel Communication Transceiver Featuring Dynamically-Sampling Bias-Free Interface Front End","authors":"Guanjie Gu;Changgui Yang;Jian Zhao;Sijun Du;Yuxuan Luo;Bo Zhao","doi":"10.1109/TBCAS.2024.3439619","DOIUrl":null,"url":null,"abstract":"Body Channel Communication (BCC) utilizes the body surface as a low-loss signal transmission medium, reducing the power consumption of wireless wearable devices. However, the effective communication range on the human body is limited in the state-of-the-art BCC transceivers, where the signal loss between the body surface and the BCC receiver remains one of the main bottlenecks. To reduce the interface loss, a high input impedance is desired by the BCC receiver, but the DC-biasing circuits decrease the input impedance. In this work, a dynamically-sampling IFE is proposed to eliminate the DC voltage bias, resulting in a 90k<inline-formula><tex-math>$\\Omega$</tex-math></inline-formula> high input impedance and a 94dB RF<inline-formula><tex-math>$-$</tex-math></inline-formula>IF conversion gain to reduce the interface loss in long-range BCC applications. The BCC transceiver chip is fabricated in 55nm CMOS process, taking a die area of 0.123mm<inline-formula><tex-math>${}^{2}$</tex-math></inline-formula>. Measured results show that the chip extends the BCC range to 2m for both the forward and backward paths, where the transmitter and receiver consume 711<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>W power in total.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"19 2","pages":"393-403"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10629235/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Body Channel Communication (BCC) utilizes the body surface as a low-loss signal transmission medium, reducing the power consumption of wireless wearable devices. However, the effective communication range on the human body is limited in the state-of-the-art BCC transceivers, where the signal loss between the body surface and the BCC receiver remains one of the main bottlenecks. To reduce the interface loss, a high input impedance is desired by the BCC receiver, but the DC-biasing circuits decrease the input impedance. In this work, a dynamically-sampling IFE is proposed to eliminate the DC voltage bias, resulting in a 90k$\Omega$ high input impedance and a 94dB RF$-$IF conversion gain to reduce the interface loss in long-range BCC applications. The BCC transceiver chip is fabricated in 55nm CMOS process, taking a die area of 0.123mm${}^{2}$. Measured results show that the chip extends the BCC range to 2m for both the forward and backward paths, where the transmitter and receiver consume 711$\mu$W power in total.
具有动态采样无偏置接口前端的 2m 范围 711μW 人体信道通信收发器。
人体信道通信(BCC)利用人体表面作为低损耗信号传输介质,从而降低了无线可穿戴设备的功耗。然而,最先进的 BCC 收发器在人体上的有效通信范围有限,体表和 BCC 接收器之间的信号损耗仍然是主要瓶颈之一。为了减少接口损耗,BCC 接收器需要高输入阻抗,但直流偏压电路会降低输入阻抗。本研究提出了一种动态采样 IFE,以消除直流电压偏置,从而实现 90kΩ 的高输入阻抗和 94dB 的射频-IF 转换增益,以减少远距离 BCC 应用中的接口损耗。BCC 收发器芯片采用 55 纳米 CMOS 工艺制造,芯片面积为 0.123 平方毫米。测量结果表明,该芯片将前向和后向路径的 BCC 范围扩大到 2 米,其中发射器和接收器的总功耗为 711μW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信