MEG Microstates: An Investigation of Underlying Brain Sources and Potential Neurophysiological Processes.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-11-01 Epub Date: 2024-08-08 DOI:10.1007/s10548-024-01073-z
Christian Valt, Angelantonio Tavella, Cristina Berchio, Dylan Seebold, Leonardo Sportelli, Antonio Rampino, Dean F Salisbury, Alessandro Bertolino, Giulio Pergola
{"title":"MEG Microstates: An Investigation of Underlying Brain Sources and Potential Neurophysiological Processes.","authors":"Christian Valt, Angelantonio Tavella, Cristina Berchio, Dylan Seebold, Leonardo Sportelli, Antonio Rampino, Dean F Salisbury, Alessandro Bertolino, Giulio Pergola","doi":"10.1007/s10548-024-01073-z","DOIUrl":null,"url":null,"abstract":"<p><p>Microstates are transient scalp configurations of brain activity measured by electroencephalography (EEG). The application of microstate analysis in magnetoencephalography (MEG) data remains challenging. In one MEG dataset (N = 113), we aimed to identify MEG microstates at rest, explore their brain sources, and relate them to changes in brain activity during open-eyes (ROE) or closed-eyes resting state (RCE) and an auditory Mismatch Negativity (MMN) task. In another dataset of simultaneously recorded EEG-MEG data (N = 21), we investigated the association between MEG and EEG microstates. Six MEG microstates (mMS) provided the best clustering of resting-state activity, each linked to different brain sources: mMS 1-2: left/right occipito-parietal; mMS 3: fronto-temporal; mMS 4: centro-medial; mMS 5-6: left/right fronto-parietal. Increases in occipital alpha power in RCE relative to ROE correlated with greater mMS 1-2 time coverage (τ<sub>b</sub>s < 0.20, ps > .002), while the lateralization of deviance detection in MMN was associated with mMS 5-6 time coverage (τ<sub>b</sub>s < 0.16, ps > .012). No temporal correlation was found between EEG and MEG microstates (ps > .05), despite some overlap in brain sources and global explained variance between mMS 2-3 and EEG microstates B-C (rs > 0.60, ps < .002). Hence, the MEG signal can be decomposed into microstates, but mMS brain activity clustering captures phenomena different from EEG microstates. Source reconstruction and task-related modulations link mMS to large-scale networks and localized activities. Thus, mMSs offer insights into brain dynamics and task-specific processes, complementing EEG microstates in studying physiological and dysfunctional brain activity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408537/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01073-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Microstates are transient scalp configurations of brain activity measured by electroencephalography (EEG). The application of microstate analysis in magnetoencephalography (MEG) data remains challenging. In one MEG dataset (N = 113), we aimed to identify MEG microstates at rest, explore their brain sources, and relate them to changes in brain activity during open-eyes (ROE) or closed-eyes resting state (RCE) and an auditory Mismatch Negativity (MMN) task. In another dataset of simultaneously recorded EEG-MEG data (N = 21), we investigated the association between MEG and EEG microstates. Six MEG microstates (mMS) provided the best clustering of resting-state activity, each linked to different brain sources: mMS 1-2: left/right occipito-parietal; mMS 3: fronto-temporal; mMS 4: centro-medial; mMS 5-6: left/right fronto-parietal. Increases in occipital alpha power in RCE relative to ROE correlated with greater mMS 1-2 time coverage (τbs < 0.20, ps > .002), while the lateralization of deviance detection in MMN was associated with mMS 5-6 time coverage (τbs < 0.16, ps > .012). No temporal correlation was found between EEG and MEG microstates (ps > .05), despite some overlap in brain sources and global explained variance between mMS 2-3 and EEG microstates B-C (rs > 0.60, ps < .002). Hence, the MEG signal can be decomposed into microstates, but mMS brain activity clustering captures phenomena different from EEG microstates. Source reconstruction and task-related modulations link mMS to large-scale networks and localized activities. Thus, mMSs offer insights into brain dynamics and task-specific processes, complementing EEG microstates in studying physiological and dysfunctional brain activity.

Abstract Image

MEG 微状态:对潜在脑源和潜在神经生理过程的研究。
微状态是通过脑电图(EEG)测量到的大脑活动的瞬时头皮构型。在脑磁图(MEG)数据中应用微状态分析仍具有挑战性。在一个脑磁图数据集(N = 113)中,我们旨在识别静息状态下的脑磁图微态,探索其大脑来源,并将其与睁眼(ROE)或闭眼静息状态(RCE)和听觉错配负性(MMN)任务中的大脑活动变化联系起来。在另一个同时记录 EEG-MEG 数据的数据集中(N = 21),我们研究了 MEG 和 EEG 微状态之间的关联。六个 MEG 微状态(mMS)提供了静息态活动的最佳聚类,每个微状态都与不同的脑源相关联:mMS 1-2:左/右枕顶叶;mMS 3:前颞叶;mMS 4:中央-内侧;mMS 5-6:左/右前顶叶。相对于 ROE,RCE 枕叶α功率的增加与 mMS 1-2 时间覆盖范围的扩大相关(τbs < 0.20,ps > .002),而 MMN 偏差检测的侧化与 mMS 5-6 时间覆盖范围相关(τbs < 0.16,ps > .012)。尽管 mMS 2-3 和 EEG 微状态 B-C 之间存在一些脑源重叠和全局解释方差(rs > 0.60,ps
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信