Characterizing electron-collecting CdTe for use in a 77 ns burst-rate imager.

IF 2.5 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2024-09-01 Epub Date: 2024-08-07 DOI:10.1107/S160057752400643X
Lena A Franklin, Nicholas J Brown, Sol M Gruner, Elida Met-Hoxha, Mark W Tate, Julia Thom-Levy
{"title":"Characterizing electron-collecting CdTe for use in a 77 ns burst-rate imager.","authors":"Lena A Franklin, Nicholas J Brown, Sol M Gruner, Elida Met-Hoxha, Mark W Tate, Julia Thom-Levy","doi":"10.1107/S160057752400643X","DOIUrl":null,"url":null,"abstract":"<p><p>The Keck-PAD (pixel array detector) was developed at Cornell as a burst-rate imager capable of recording images from successive electron bunches (153 ns period) from the Advanced Photon Source (APS). Both Si and hole-collecting Schottky CdTe have been successfully bonded to this ASIC (application-specific integrated circuit) and used with this frame rate. The facility upgrades at the APS will lower the bunch period to 77 ns, which will require modifications to the Keck-PAD electronics to image properly at this reduced period. In addition, operation at high X-ray energies will require a different sensor material having a shorter charge collection time. For the target energy of 40 keV for this project, simulations have shown that electron-collecting CdTe should allow >90% charge collection within 35 ns. This collection time will be sufficient to sample the signal from one frame and prepare for the next. 750 µm-thick electron-collecting Schottky CdTe has been obtained from Acrorad and bonded to two different charge-integrating ASICs developed at Cornell, the Keck-PAD and the CU-APS-PAD. Carrier mobility has been investigated using the detector response to single X-ray bunches at the Cornell High Energy Synchrotron Source and to a pulsed optical laser. The tests indicate that the collection time will meet the requirements for 77 ns imaging.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371066/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S160057752400643X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Keck-PAD (pixel array detector) was developed at Cornell as a burst-rate imager capable of recording images from successive electron bunches (153 ns period) from the Advanced Photon Source (APS). Both Si and hole-collecting Schottky CdTe have been successfully bonded to this ASIC (application-specific integrated circuit) and used with this frame rate. The facility upgrades at the APS will lower the bunch period to 77 ns, which will require modifications to the Keck-PAD electronics to image properly at this reduced period. In addition, operation at high X-ray energies will require a different sensor material having a shorter charge collection time. For the target energy of 40 keV for this project, simulations have shown that electron-collecting CdTe should allow >90% charge collection within 35 ns. This collection time will be sufficient to sample the signal from one frame and prepare for the next. 750 µm-thick electron-collecting Schottky CdTe has been obtained from Acrorad and bonded to two different charge-integrating ASICs developed at Cornell, the Keck-PAD and the CU-APS-PAD. Carrier mobility has been investigated using the detector response to single X-ray bunches at the Cornell High Energy Synchrotron Source and to a pulsed optical laser. The tests indicate that the collection time will meet the requirements for 77 ns imaging.

鉴定用于 77 毫微秒猝发率成像仪的电子收集碲化镉。
康奈尔大学开发的 Keck-PAD(像素阵列探测器)是一种猝发率成像仪,能够记录来自先进光子源(APS)的连续电子束(153 ns 周期)的图像。硅和空穴收集肖特基碲化镉都已成功粘合到该 ASIC(专用集成电路)上,并在此帧速率下使用。APS 的设施升级将把波束周期降低到 77 ns,这就需要对 Keck-PAD 电子设备进行修改,以便在缩短的周期内正常成像。此外,在高 X 射线能量下运行将需要不同的传感器材料,以缩短电荷收集时间。模拟显示,对于本项目的 40 keV 目标能量,电子收集型碲化镉应能在 35 ns 内实现 >90% 的电荷收集。这一收集时间足以对一帧的信号进行采样,并为下一帧做好准备。我们从 Acrorad 公司获得了 750 微米厚的肖特基碲化镉电子收集材料,并将其与康奈尔大学开发的两种不同的电荷集成 ASIC(Keck-PAD 和 CU-APS-PAD)结合在一起。利用探测器对康奈尔高能同步辐射光源的单束 X 射线和脉冲光激光的响应,对载流子迁移率进行了研究。测试表明,收集时间将满足 77 ns 成像的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Synchrotron Radiation
Journal of Synchrotron Radiation INSTRUMENTS & INSTRUMENTATIONOPTICS&-OPTICS
CiteScore
5.60
自引率
12.00%
发文量
289
审稿时长
1 months
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信