A high-performance watermelon skin ion-solvating membrane for electrochemical CO2 reduction.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Qinglu Liu, Tang Tang, Ziyu Tian, Shiwen Ding, Linqin Wang, Dexin Chen, Zhiwei Wang, Wentao Zheng, Husileng Lee, Xingyu Lu, Xiaohe Miao, Lin Liu, Licheng Sun
{"title":"A high-performance watermelon skin ion-solvating membrane for electrochemical CO<sub>2</sub> reduction.","authors":"Qinglu Liu, Tang Tang, Ziyu Tian, Shiwen Ding, Linqin Wang, Dexin Chen, Zhiwei Wang, Wentao Zheng, Husileng Lee, Xingyu Lu, Xiaohe Miao, Lin Liu, Licheng Sun","doi":"10.1038/s41467-024-51139-6","DOIUrl":null,"url":null,"abstract":"<p><p>Ion-solvating membranes have been gaining increasing attention as core components of electrochemical energy conversion and storage devices. However, the development of ion-solvating membranes with low ion resistance and high ion selectivity still poses challenges. In order to propose an effective strategy for high-performance ion-solvating membranes, this study conducted a comprehensive investigation on watermelon skin membranes through a combination of experimental research and molecular dynamics simulation. The micropores and continuous hydrogen-bonding networks constructed by the synergistic effect of cellulose fiber and pectin enable the hypodermis of watermelon skin membranes to have a high ion conductivity of 282.3 mS cm<sup>-1</sup> (room temperature, saturated with 1 M KOH). The negatively charged groups and hydroxyl groups on the microporous channels increase the formate penetration resistance of watermelon skin membranes in contrast to commercially available membranes, and this is crucial for CO<sub>2</sub> electroreduction. Therefore, the confinement of proton donors and negatively charged groups within three-dimensional microporous polymers gives inspiration for the design of high-performance ion-solvating membranes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51139-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ion-solvating membranes have been gaining increasing attention as core components of electrochemical energy conversion and storage devices. However, the development of ion-solvating membranes with low ion resistance and high ion selectivity still poses challenges. In order to propose an effective strategy for high-performance ion-solvating membranes, this study conducted a comprehensive investigation on watermelon skin membranes through a combination of experimental research and molecular dynamics simulation. The micropores and continuous hydrogen-bonding networks constructed by the synergistic effect of cellulose fiber and pectin enable the hypodermis of watermelon skin membranes to have a high ion conductivity of 282.3 mS cm-1 (room temperature, saturated with 1 M KOH). The negatively charged groups and hydroxyl groups on the microporous channels increase the formate penetration resistance of watermelon skin membranes in contrast to commercially available membranes, and this is crucial for CO2 electroreduction. Therefore, the confinement of proton donors and negatively charged groups within three-dimensional microporous polymers gives inspiration for the design of high-performance ion-solvating membranes.

Abstract Image

用于二氧化碳电化学还原的高性能西瓜皮离子溶解膜。
离子溶解膜作为电化学能量转换和储存装置的核心部件,越来越受到人们的关注。然而,开发具有低离子阻力和高离子选择性的离子溶解膜仍是一项挑战。为了提出高性能离子溶解膜的有效策略,本研究通过实验研究和分子动力学模拟相结合的方法对西瓜皮膜进行了全面研究。在纤维素纤维和果胶的协同作用下构建的微孔和连续氢键网络使西瓜皮膜的下真皮层具有 282.3 mS cm-1 的高离子电导率(室温,1 M KOH 饱和)。与市售膜相比,微孔通道上的负电荷基团和羟基增加了西瓜皮膜的甲酸盐渗透阻力,这对二氧化碳的电还原至关重要。因此,将质子供体和带负电的基团限制在三维微孔聚合物中为设计高性能离子溶解膜提供了灵感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信