{"title":"The Efficacy of I Na Block to Cardiovert Atrial Fibrillation Is Enhanced by Inhibition of I K1.","authors":"Alexander Burashnikov, Charles Antzelevitch","doi":"10.1097/FJC.0000000000001617","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>There is a need for more efficient pharmacological cardioversion of atrial fibrillation (AF). We tested the hypothesis that inhibition of I K1 significantly enhances the efficacy of I Na block to depress atrial excitability and to cardiovert AF. The study was conducted in canine isolated arterially perfused right atrial preparations with rim of ventricular tissue. AF was induced in the presence of acetylcholine (ACh; 0.5 µM). BaCl 2 (10 µM) was used to inhibit I K1 and flecainide (1.5 µM) to block I Na . Sustained AF (>45 minutes) was recorded in 100% atria (5/5) in the presence of ACh alone. Flecainide cardioverted AF in 50% of atria (4/8), BaCl 2 in 0% (0/5), and their combination in 100% (5/5). AF cardioversion occurred in 15 ± 9 minutes with flecainide alone (n = 4) and in 8 ± 9 minutes with the combination (n = 5). Following drug-induced AF cardioversion, AF was inducible in 4/4 atria with flecainide alone (≤5 minutes duration) and in 2/5 atria with the combination (≤30 seconds duration). Atrial excitability was significantly more depressed by combined versus monotherapies. There was little to no effect on ventricular excitability under any condition tested. Thus, inhibition of I K1 significantly enhances the efficacy of flecainide to depress atrial excitability and to cardiovert AF in our experimental setting. A combination of I Na and I K1 inhibition may be an effective approach for cardioversion of AF.</p>","PeriodicalId":15212,"journal":{"name":"Journal of Cardiovascular Pharmacology","volume":" ","pages":"434-439"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/FJC.0000000000001617","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: There is a need for more efficient pharmacological cardioversion of atrial fibrillation (AF). We tested the hypothesis that inhibition of I K1 significantly enhances the efficacy of I Na block to depress atrial excitability and to cardiovert AF. The study was conducted in canine isolated arterially perfused right atrial preparations with rim of ventricular tissue. AF was induced in the presence of acetylcholine (ACh; 0.5 µM). BaCl 2 (10 µM) was used to inhibit I K1 and flecainide (1.5 µM) to block I Na . Sustained AF (>45 minutes) was recorded in 100% atria (5/5) in the presence of ACh alone. Flecainide cardioverted AF in 50% of atria (4/8), BaCl 2 in 0% (0/5), and their combination in 100% (5/5). AF cardioversion occurred in 15 ± 9 minutes with flecainide alone (n = 4) and in 8 ± 9 minutes with the combination (n = 5). Following drug-induced AF cardioversion, AF was inducible in 4/4 atria with flecainide alone (≤5 minutes duration) and in 2/5 atria with the combination (≤30 seconds duration). Atrial excitability was significantly more depressed by combined versus monotherapies. There was little to no effect on ventricular excitability under any condition tested. Thus, inhibition of I K1 significantly enhances the efficacy of flecainide to depress atrial excitability and to cardiovert AF in our experimental setting. A combination of I Na and I K1 inhibition may be an effective approach for cardioversion of AF.
期刊介绍:
Journal of Cardiovascular Pharmacology is a peer reviewed, multidisciplinary journal that publishes original articles and pertinent review articles on basic and clinical aspects of cardiovascular pharmacology. The Journal encourages submission in all aspects of cardiovascular pharmacology/medicine including, but not limited to: stroke, kidney disease, lipid disorders, diabetes, systemic and pulmonary hypertension, cancer angiogenesis, neural and hormonal control of the circulation, sepsis, neurodegenerative diseases with a vascular component, cardiac and vascular remodeling, heart failure, angina, anticoagulants/antiplatelet agents, drugs/agents that affect vascular smooth muscle, and arrhythmias.
Appropriate subjects include new drug development and evaluation, physiological and pharmacological bases of drug action, metabolism, drug interactions and side effects, application of drugs to gain novel insights into physiology or pathological conditions, clinical results with new and established agents, and novel methods. The focus is on pharmacology in its broadest applications, incorporating not only traditional approaches, but new approaches to the development of pharmacological agents and the prevention and treatment of cardiovascular diseases. Please note that JCVP does not publish work based on biological extracts of mixed and uncertain chemical composition or unknown concentration.