A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates.

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2024-10-15 Epub Date: 2024-09-03 DOI:10.1242/dev.202968
Christopher J Johnson, Zheng Zhang, Haifeng Zhang, Renjie Shang, Katarzyna M Piekarz, Pengpeng Bi, Alberto Stolfi
{"title":"A change in cis-regulatory logic underlying obligate versus facultative muscle multinucleation in chordates.","authors":"Christopher J Johnson, Zheng Zhang, Haifeng Zhang, Renjie Shang, Katarzyna M Piekarz, Pengpeng Bi, Alberto Stolfi","doi":"10.1242/dev.202968","DOIUrl":null,"url":null,"abstract":"<p><p>Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441980/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.202968","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is expressed only in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. Although in vertebrates myogenic regulatory factors (MRFs) such as MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF, MyoD and Early B-cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf-binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.

脊索动物肌肉多核形成的顺式调控逻辑变化
脊椎动物和鳞翅目动物是姊妹类群,它们都有一个共同的融合因子--Myomaker(Mymk),它能驱动肌母细胞融合和肌肉多核化。然而,它们在何时何地表达 Mymk 方面却存在差异。在脊椎动物中,所有发育中的骨骼肌都表达 Mymk,而且必须是多核的。在鳞毛目动物中,Mymk只在变态后的多核肌肉中表达,而在单核幼虫肌肉中则不表达。在这项研究中,我们证明了Mymk启动子区域的顺式调控序列差异是其在单脊类动物和脊椎动物中不同时空转录激活模式的基础。在脊椎动物中,仅MyoD1等肌生成调节因子(MRF)就足以满足Mymk在所有骨骼肌中的转录需要,而我们的研究表明,Mymk在栉水母后变态肌肉中的转录需要MRF/MyoD和早期B细胞因子(Ebf)的共同作用。这种宏观进化上的差异似乎是顺式编码的,这可能是由于在栉水母Mymk启动子中存在一个假定的Ebf结合位点,该位点与预测的MRF结合位点相邻。我们进一步讨论了Mymk和肌母细胞融合可能是如何在偶蹄目和脊椎动物的最后共同祖先中被调控的,并为此提出了两种模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信