COMSE: analysis of single-cell RNA-seq data using community detection-based feature selection.

IF 4.4 1区 生物学 Q1 BIOLOGY
Qinhuan Luo, Yaozhu Chen, Xun Lan
{"title":"COMSE: analysis of single-cell RNA-seq data using community detection-based feature selection.","authors":"Qinhuan Luo, Yaozhu Chen, Xun Lan","doi":"10.1186/s12915-024-01963-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-cell RNA sequencing enables studying cells individually, yet high gene dimensions and low cell numbers challenge analysis. And only a subset of the genes detected are involved in the biological processes underlying cell-type specific functions.</p><p><strong>Result: </strong>In this study, we present COMSE, an unsupervised feature selection framework using community detection to capture informative genes from scRNA-seq data. COMSE identified homogenous cell substates with high resolution, as demonstrated by distinguishing different cell cycle stages. Evaluations based on real and simulated scRNA-seq datasets showed COMSE outperformed methods even with high dropout rates in cell clustering assignment. We also demonstrate that by identifying communities of genes associated with batch effects, COMSE parses signals reflecting biological difference from noise arising due to differences in sequencing protocols, thereby enabling integrated analysis of scRNA-seq datasets of different sources.</p><p><strong>Conclusions: </strong>COMSE provides an efficient unsupervised framework that selects highly informative genes in scRNA-seq data improving cell sub-states identification and cell clustering. It identifies gene subsets that reveal biological and technical heterogeneity, supporting applications like batch effect correction and pathway analysis. It also provides robust results for bulk RNA-seq data analysis.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-01963-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Single-cell RNA sequencing enables studying cells individually, yet high gene dimensions and low cell numbers challenge analysis. And only a subset of the genes detected are involved in the biological processes underlying cell-type specific functions.

Result: In this study, we present COMSE, an unsupervised feature selection framework using community detection to capture informative genes from scRNA-seq data. COMSE identified homogenous cell substates with high resolution, as demonstrated by distinguishing different cell cycle stages. Evaluations based on real and simulated scRNA-seq datasets showed COMSE outperformed methods even with high dropout rates in cell clustering assignment. We also demonstrate that by identifying communities of genes associated with batch effects, COMSE parses signals reflecting biological difference from noise arising due to differences in sequencing protocols, thereby enabling integrated analysis of scRNA-seq datasets of different sources.

Conclusions: COMSE provides an efficient unsupervised framework that selects highly informative genes in scRNA-seq data improving cell sub-states identification and cell clustering. It identifies gene subsets that reveal biological and technical heterogeneity, supporting applications like batch effect correction and pathway analysis. It also provides robust results for bulk RNA-seq data analysis.

COMSE:利用基于群落检测的特征选择分析单细胞 RNA-seq 数据。
背景:单细胞 RNA 测序可对细胞进行单独研究,但高基因维度和低细胞数量给分析带来了挑战。而且检测到的基因中只有一部分参与了细胞类型特定功能的生物学过程:在这项研究中,我们提出了 COMSE,这是一种无监督特征选择框架,利用群落检测从 scRNA-seq 数据中捕获信息基因。COMSE 通过区分不同的细胞周期阶段,高分辨率地识别了同源细胞亚型。基于真实和模拟 scRNA-seq 数据集的评估结果表明,即使在细胞聚类分配中出现高丢失率,COMSE 的表现也优于其他方法。我们还证明,通过识别与批次效应相关的基因群落,COMSE 可以将反映生物差异的信号与测序协议差异导致的噪音区分开来,从而实现对不同来源 scRNA-seq 数据集的综合分析:COMSE提供了一个高效的无监督框架,它能在scRNA-seq数据中选择信息量大的基因,改善细胞亚状态识别和细胞聚类。它能识别揭示生物和技术异质性的基因子集,支持批量效应校正和通路分析等应用。它还能为批量 RNA-seq 数据分析提供可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信