{"title":"Combinatorial effect of Apigenin-resveratrol on white adipocyte plasticity and trans-differentiation for activating lipid metabolism.","authors":"Sreelekshmi Sreekumar, Manikantan Syamala Kiran","doi":"10.1002/biof.2111","DOIUrl":null,"url":null,"abstract":"<p><p>Inducing browning in white adipocytes has emerged as a promising therapeutic approach for addressing obesity. Bioactive that modulate the WAT microenvironment to induce trans browning in white adipocytes have been explored as a strategy to control unregulated lipid storage. However, relying on a single bioactive for modulating lipid metabolism has proven insufficient in obese individuals during human trials, because these compounds primarily activate a single biochemical pathway in promoting browning. Consequently, there is a growing emphasis on targeting multiple pathways to ensure a safe and effective browning process. The present study investigated the combinatorial effect of bioactives namely Apigenin and Resveratrol for activating multiple pathways for effective trans-browning of white adipocytes. The combination was seen to promote the browning more effectively than the single bioactive, as the combination simultaneously activated multiple signaling pathways to induce angiogenesis-mediated browning in primary white adipocytes isolated from obese mice. Activation of PI3K signaling via estrogen receptor-α-dependent pathway resulted in simultaneous activation of angiogenesis and trans browning in white adipocytes. The study provides valuable insights into the potential use of bioactives in combination with therapeutic intervention to improve the overall health of obese subjects by enhancing lipid metabolism by activating trans-differentiation of white adipocytes.</p>","PeriodicalId":8923,"journal":{"name":"BioFactors","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioFactors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/biof.2111","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inducing browning in white adipocytes has emerged as a promising therapeutic approach for addressing obesity. Bioactive that modulate the WAT microenvironment to induce trans browning in white adipocytes have been explored as a strategy to control unregulated lipid storage. However, relying on a single bioactive for modulating lipid metabolism has proven insufficient in obese individuals during human trials, because these compounds primarily activate a single biochemical pathway in promoting browning. Consequently, there is a growing emphasis on targeting multiple pathways to ensure a safe and effective browning process. The present study investigated the combinatorial effect of bioactives namely Apigenin and Resveratrol for activating multiple pathways for effective trans-browning of white adipocytes. The combination was seen to promote the browning more effectively than the single bioactive, as the combination simultaneously activated multiple signaling pathways to induce angiogenesis-mediated browning in primary white adipocytes isolated from obese mice. Activation of PI3K signaling via estrogen receptor-α-dependent pathway resulted in simultaneous activation of angiogenesis and trans browning in white adipocytes. The study provides valuable insights into the potential use of bioactives in combination with therapeutic intervention to improve the overall health of obese subjects by enhancing lipid metabolism by activating trans-differentiation of white adipocytes.
期刊介绍:
BioFactors, a journal of the International Union of Biochemistry and Molecular Biology, is devoted to the rapid publication of highly significant original research articles and reviews in experimental biology in health and disease.
The word “biofactors” refers to the many compounds that regulate biological functions. Biological factors comprise many molecules produced or modified by living organisms, and present in many essential systems like the blood, the nervous or immunological systems. A non-exhaustive list of biological factors includes neurotransmitters, cytokines, chemokines, hormones, coagulation factors, transcription factors, signaling molecules, receptor ligands and many more. In the group of biofactors we can accommodate several classical molecules not synthetized in the body such as vitamins, micronutrients or essential trace elements.
In keeping with this unified view of biochemistry, BioFactors publishes research dealing with the identification of new substances and the elucidation of their functions at the biophysical, biochemical, cellular and human level as well as studies revealing novel functions of already known biofactors. The journal encourages the submission of studies that use biochemistry, biophysics, cell and molecular biology and/or cell signaling approaches.