Molecular origins of absorption wavelength variation among phycocyanobilin-binding proteins.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2024-10-01 Epub Date: 2024-08-08 DOI:10.1016/j.bpj.2024.08.001
Tomoyasu Noji, Keisuke Saito, Hiroshi Ishikita
{"title":"Molecular origins of absorption wavelength variation among phycocyanobilin-binding proteins.","authors":"Tomoyasu Noji, Keisuke Saito, Hiroshi Ishikita","doi":"10.1016/j.bpj.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Phycocyanobilin (PCB)-binding proteins, including cyanobacteriochromes and phytochromes, function as photoreceptors and exhibit a wide range of absorption maximum wavelengths. To elucidate the color-tuning mechanisms among these proteins, we investigated seven crystal structures of six PCB-binding proteins: Anacy_2551g3, AnPixJg2, phosphorylation-responsive photosensitive histidine kinase, RcaE, Sb.phyB(PG)-PCB, and Slr1393g3. Employing a quantum chemical/molecular mechanical approach combined with a polarizable continuum model, our analysis revealed that differences in absorption wavelengths among PCB-binding proteins primarily arise from variations in the shape of the PCB molecule itself, accounting for a ∼150 nm difference. Remarkably, calculated excitation energies sufficiently reproduced the absorption wavelengths of these proteins spanning ∼200 nm, including 728 nm for Anacy_2551g3. However, assuming the hypothesized lactim conformation resulted in a significant deviation from the experimentally measured absorption wavelength for Anacy_2551g3. The significantly red-shifted absorption wavelength of Anacy_2551g3 can unambiguously be explained by the significant overlap of molecular orbitals between the two pyrrole rings at both edges of the PCB chromophore without the need to hypothesize lactim formation.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.08.001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Phycocyanobilin (PCB)-binding proteins, including cyanobacteriochromes and phytochromes, function as photoreceptors and exhibit a wide range of absorption maximum wavelengths. To elucidate the color-tuning mechanisms among these proteins, we investigated seven crystal structures of six PCB-binding proteins: Anacy_2551g3, AnPixJg2, phosphorylation-responsive photosensitive histidine kinase, RcaE, Sb.phyB(PG)-PCB, and Slr1393g3. Employing a quantum chemical/molecular mechanical approach combined with a polarizable continuum model, our analysis revealed that differences in absorption wavelengths among PCB-binding proteins primarily arise from variations in the shape of the PCB molecule itself, accounting for a ∼150 nm difference. Remarkably, calculated excitation energies sufficiently reproduced the absorption wavelengths of these proteins spanning ∼200 nm, including 728 nm for Anacy_2551g3. However, assuming the hypothesized lactim conformation resulted in a significant deviation from the experimentally measured absorption wavelength for Anacy_2551g3. The significantly red-shifted absorption wavelength of Anacy_2551g3 can unambiguously be explained by the significant overlap of molecular orbitals between the two pyrrole rings at both edges of the PCB chromophore without the need to hypothesize lactim formation.

藻青素结合蛋白吸收波长变化的分子起源。
植物花青素(PCB)结合蛋白,包括蓝藻色素和植物色素,具有光感受器的功能,并表现出多种吸收最大波长。为了阐明这些蛋白质之间的颜色调谐机制,我们研究了六种 PCB 结合蛋白的七种晶体结构:Anacy_2551g3、AnPixJg2、PPHK、RcaE、Sb.phyB(PG)-PCB 和 Slr1393g3。通过量子化学/分子机械方法与可极化连续体模型相结合,我们的分析表明,多氯联苯结合蛋白之间吸收波长的差异主要源于多氯联苯分子本身形状的变化,其差异在 150 nm 左右。值得注意的是,计算出的激发能量充分再现了这些蛋白质的吸收波长,波长跨度达 200 nm,其中 Anacy_2551g3 的吸收波长为 728 nm。然而,假设的乳蛋白构象导致 Anacy_2551g3 的吸收波长与实验测量值有显著偏差。Anacy_2551g3 明显偏红的吸收波长可以明确地解释为 PCB 发色团两个边缘的两个吡咯环之间的分子轨道有明显的重叠,而不需要假定形成内脂酰亚胺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信