{"title":"Progress in the application of artificial intelligence in skin wound assessment and prediction of healing time.","authors":"Ming-Yao Chen, Ming-Qi Cao, Tian-Ying Xu","doi":"10.62347/MYHE3488","DOIUrl":null,"url":null,"abstract":"<p><p>Since the 1970s, artificial intelligence (AI) has played an increasingly pivotal role in the medical field, enhancing the efficiency of disease diagnosis and treatment. Amidst an aging population and the proliferation of chronic disease, the prevalence of complex surgeries for high-risk multimorbid patients and hard-to-heal wounds has escalated. Healthcare professionals face the challenge of delivering safe and effective care to all patients concurrently. Inadequate management of skin wounds exacerbates the risk of infection and complications, which can obstruct the healing process and diminish patients' quality of life. AI shows substantial promise in revolutionizing wound care and management, thus enhancing the treatment of hospitalized patients and enabling healthcare workers to allocate their time more effectively. This review details the advancements in applying AI for skin wound assessment and the prediction of healing timelines. It emphasizes the use of diverse algorithms to automate and streamline the measurement, classification, and identification of chronic wound healing stages, and to predict wound healing times. Moreover, the review addresses existing limitations and explores future directions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/MYHE3488","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the 1970s, artificial intelligence (AI) has played an increasingly pivotal role in the medical field, enhancing the efficiency of disease diagnosis and treatment. Amidst an aging population and the proliferation of chronic disease, the prevalence of complex surgeries for high-risk multimorbid patients and hard-to-heal wounds has escalated. Healthcare professionals face the challenge of delivering safe and effective care to all patients concurrently. Inadequate management of skin wounds exacerbates the risk of infection and complications, which can obstruct the healing process and diminish patients' quality of life. AI shows substantial promise in revolutionizing wound care and management, thus enhancing the treatment of hospitalized patients and enabling healthcare workers to allocate their time more effectively. This review details the advancements in applying AI for skin wound assessment and the prediction of healing timelines. It emphasizes the use of diverse algorithms to automate and streamline the measurement, classification, and identification of chronic wound healing stages, and to predict wound healing times. Moreover, the review addresses existing limitations and explores future directions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.