{"title":"Predictive value of gradient boosting decision trees for postoperative atelectasis complications in patients with pulmonary destruction.","authors":"Zhongming Tang, Jifu Tang, Wei Liu, Guoqiang Chen, Chenggang Feng, Aiping Zhang","doi":"10.62347/IEQE3348","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the application value of a gradient boosting decision tree (GBDT) in predicting postoperative atelectasis in patients with destroyed lungs.</p><p><strong>Methods: </strong>A total of 170 patients with damaged lungs who underwent surgical treatment in Chest Hospital of Guangxi Zhuang Autonomous Region from January 2021 to May 2023 were retrospectively selected. The patients were divided into a training set (n = 119) and a validation set (n = 51). Both GBDT algorithm model and Logistic regression model for predicting postoperative atelectasis in patients were constructed. The receiver operating characteristic (ROC) curve, calibration curve and decision curve were used to evaluate the prediction efficiency of the model.</p><p><strong>Results: </strong>The GBDT model indicated that the relative importance scores of the four influencing factors were operation time (51.037), intraoperative blood loss (38.657), presence of lung function (9.126) and sputum obstruction (1.180). Multivariate Logistic regression analysis revealed that operation duration and sputum obstruction were significant predictors of postoperative atelectasis among patients with destroyed lungs within the training set (<i>P</i> = 0.048, <i>P</i> = 0.002). The ROC curve analysis showed that the area under the curve (AUC) for GBDT and Logistic model in the training set was 0.795 and 0.763, and their AUCs in the validation set were 0.776 and 0.811. The GBDT model's predictions closely matched the ideal curve, showing a higher net benefit than the reference line.</p><p><strong>Conclusions: </strong>GBDT model is suitable for predicting the incidence of complications in small samples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/IEQE3348","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To explore the application value of a gradient boosting decision tree (GBDT) in predicting postoperative atelectasis in patients with destroyed lungs.
Methods: A total of 170 patients with damaged lungs who underwent surgical treatment in Chest Hospital of Guangxi Zhuang Autonomous Region from January 2021 to May 2023 were retrospectively selected. The patients were divided into a training set (n = 119) and a validation set (n = 51). Both GBDT algorithm model and Logistic regression model for predicting postoperative atelectasis in patients were constructed. The receiver operating characteristic (ROC) curve, calibration curve and decision curve were used to evaluate the prediction efficiency of the model.
Results: The GBDT model indicated that the relative importance scores of the four influencing factors were operation time (51.037), intraoperative blood loss (38.657), presence of lung function (9.126) and sputum obstruction (1.180). Multivariate Logistic regression analysis revealed that operation duration and sputum obstruction were significant predictors of postoperative atelectasis among patients with destroyed lungs within the training set (P = 0.048, P = 0.002). The ROC curve analysis showed that the area under the curve (AUC) for GBDT and Logistic model in the training set was 0.795 and 0.763, and their AUCs in the validation set were 0.776 and 0.811. The GBDT model's predictions closely matched the ideal curve, showing a higher net benefit than the reference line.
Conclusions: GBDT model is suitable for predicting the incidence of complications in small samples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.