{"title":"Obstacle negotiation in female desert locust oviposition digging","authors":"Chen Klechevski, Lazar Kats, Amir Ayali","doi":"10.1007/s00114-024-01929-1","DOIUrl":null,"url":null,"abstract":"<div><p>The female locust lays its eggs deep within soft substrate to protect them from predators and provide optimal conditions for successful development and hatching. During oviposition digging, the female’s abdomen is pooled and extends into the ground, guided by a dedicated excavation mechanism at its tip, comprising two pairs of specialized digging valves. Little is known about how these active valves negotiate the various obstacles encountered on their path. In this study, female locusts oviposited their eggs in specialized sand-filled tubes with pre-inserted 3D-printed plastic obstacles. The subterranean route taken by the abdomen and digging valves upon encountering the obstacles was investigated, characterized, and compared to that in control tubes without obstacles. Data were obtained by way of visual inspection, by utilizing cone beam computed tomography scans in high-definition mode, and by making paraffin casts of the oviposition burrows (after egg hatching). We demonstrate, for the first time, the subterranean navigation ability of the female locust’s excavation mechanism and its ability to circumvent obstacles during oviposition. Finally, we discuss the role of active sensory-motor mechanisms versus the passive embodied function of the valves, central control, and decision-making.</p></div>","PeriodicalId":794,"journal":{"name":"The Science of Nature","volume":"111 5","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310224/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Science of Nature","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s00114-024-01929-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The female locust lays its eggs deep within soft substrate to protect them from predators and provide optimal conditions for successful development and hatching. During oviposition digging, the female’s abdomen is pooled and extends into the ground, guided by a dedicated excavation mechanism at its tip, comprising two pairs of specialized digging valves. Little is known about how these active valves negotiate the various obstacles encountered on their path. In this study, female locusts oviposited their eggs in specialized sand-filled tubes with pre-inserted 3D-printed plastic obstacles. The subterranean route taken by the abdomen and digging valves upon encountering the obstacles was investigated, characterized, and compared to that in control tubes without obstacles. Data were obtained by way of visual inspection, by utilizing cone beam computed tomography scans in high-definition mode, and by making paraffin casts of the oviposition burrows (after egg hatching). We demonstrate, for the first time, the subterranean navigation ability of the female locust’s excavation mechanism and its ability to circumvent obstacles during oviposition. Finally, we discuss the role of active sensory-motor mechanisms versus the passive embodied function of the valves, central control, and decision-making.
期刊介绍:
The Science of Nature - Naturwissenschaften - is Springer''s flagship multidisciplinary science journal. The journal is dedicated to the fast publication and global dissemination of high-quality research and invites papers, which are of interest to the broader community in the biological sciences. Contributions from the chemical, geological, and physical sciences are welcome if contributing to questions of general biological significance. Particularly welcomed are contributions that bridge between traditionally isolated areas and attempt to increase the conceptual understanding of systems and processes that demand an interdisciplinary approach.