Decreasing light exposure increases the abundance of antibiotic resistance genes in the cecum and feces of laying hens.

IF 8 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-11-01 Epub Date: 2024-08-05 DOI:10.1016/j.scitotenv.2024.175275
Yu Zhang, Wenbo Chen, Yilin Yuan, Xindi Liao, Jiandui Mi
{"title":"Decreasing light exposure increases the abundance of antibiotic resistance genes in the cecum and feces of laying hens.","authors":"Yu Zhang, Wenbo Chen, Yilin Yuan, Xindi Liao, Jiandui Mi","doi":"10.1016/j.scitotenv.2024.175275","DOIUrl":null,"url":null,"abstract":"<p><p>The gut microbiome plays a crucial role in maintaining animal health and is influenced by various factors, including light exposure; however, the response in laying hens of the gut microbiome to intermittent light regimes and the related impact on antibiotic resistance genes (ARGs) remain poorly understood. In this study, we divided 20-week-old laying hens into two groups. These groups were exposed to either continuous normal light or intermittent light for 8 weeks. The feces and cecal contents of laying hens were collected for analysis. Metagenomic analysis of both feces and cecal content samples revealed significant shifts in the microbial composition and abundance of ARGs under intermittent light exposure compared to normal light exposure (P < 0.05). Furthermore, metabolomic analysis of the cecal contents revealed substantial alterations in the abundance and composition of ARGs and mobile genetic elements (MGEs) in response to intermittent light exposure (P < 0.05). Network analysis revealed intricate co-occurrence patterns among bacterial communities, metabolites, and ARGs, highlighting correlations between Bacteroidetes species, ARGs, and metabolites. Although certain bacterial species showed differential associations, the dominant bacteria carrying ARGs or MGEs had relatively low numbers, suggesting that other bacterial communities may have had a greater influence on ARG dissemination. Moreover, our observations highlight the crucial role of metabolites as mediators between bacterial communities and ARGs, providing novel insights into the dynamics of antibiotic resistance development. Our findings underscore the impact of intermittent light exposure on ARG proliferation in poultry farming and emphasize interconnections among ARGs, bacterial communities, and metabolic pathways. The results underscore the importance of considering both microbial communities and metabolic processes to understand antibiotic resistance in agricultural settings.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"949 ","pages":"175275"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175275","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The gut microbiome plays a crucial role in maintaining animal health and is influenced by various factors, including light exposure; however, the response in laying hens of the gut microbiome to intermittent light regimes and the related impact on antibiotic resistance genes (ARGs) remain poorly understood. In this study, we divided 20-week-old laying hens into two groups. These groups were exposed to either continuous normal light or intermittent light for 8 weeks. The feces and cecal contents of laying hens were collected for analysis. Metagenomic analysis of both feces and cecal content samples revealed significant shifts in the microbial composition and abundance of ARGs under intermittent light exposure compared to normal light exposure (P < 0.05). Furthermore, metabolomic analysis of the cecal contents revealed substantial alterations in the abundance and composition of ARGs and mobile genetic elements (MGEs) in response to intermittent light exposure (P < 0.05). Network analysis revealed intricate co-occurrence patterns among bacterial communities, metabolites, and ARGs, highlighting correlations between Bacteroidetes species, ARGs, and metabolites. Although certain bacterial species showed differential associations, the dominant bacteria carrying ARGs or MGEs had relatively low numbers, suggesting that other bacterial communities may have had a greater influence on ARG dissemination. Moreover, our observations highlight the crucial role of metabolites as mediators between bacterial communities and ARGs, providing novel insights into the dynamics of antibiotic resistance development. Our findings underscore the impact of intermittent light exposure on ARG proliferation in poultry farming and emphasize interconnections among ARGs, bacterial communities, and metabolic pathways. The results underscore the importance of considering both microbial communities and metabolic processes to understand antibiotic resistance in agricultural settings.

减少光照会增加蛋鸡盲肠和粪便中抗生素抗性基因的丰度。
肠道微生物组在维持动物健康方面起着至关重要的作用,并受到包括光照在内的各种因素的影响;然而,人们对蛋鸡肠道微生物组对间歇性光照制度的反应以及对抗生素耐药基因(ARGs)的相关影响仍然知之甚少。在这项研究中,我们将 20 周大的蛋鸡分为两组。这两组母鸡在连续正常光照或间歇光照下饲养 8 周。收集蛋鸡的粪便和盲肠内容物进行分析。粪便和盲肠内容物样本的元基因组分析表明,与正常光照相比,间歇光照下 ARGs 的微生物组成和丰度发生了显著变化(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信