Interface Regulation via an Organometallic Ferrocene-Based Molecule toward Inverted Perovskite Solar Cells

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Fei Wang, Taomiao Wang, Chuangye Ge, Yonggui Sun, Xiaokang Sun, Xiao Liang, Dawei Duan, Qiannan Li, Yongjun Li, Fan Zhang, Guo Yang, Xianfang Zhou, Quanyao Zhu, Haoran Lin, Hu Chen, Tom Wu, Hanlin Hu
{"title":"Interface Regulation via an Organometallic Ferrocene-Based Molecule toward Inverted Perovskite Solar Cells","authors":"Fei Wang, Taomiao Wang, Chuangye Ge, Yonggui Sun, Xiaokang Sun, Xiao Liang, Dawei Duan, Qiannan Li, Yongjun Li, Fan Zhang, Guo Yang, Xianfang Zhou, Quanyao Zhu, Haoran Lin, Hu Chen, Tom Wu, Hanlin Hu","doi":"10.1021/acsenergylett.4c01433","DOIUrl":null,"url":null,"abstract":"There is a significant challenge of charge recombination at the perovskite/electron transport layer (ETL), coupled with the need of optimized interface charge transfer in inverted perovskite solar cells (PSCs). In this work, an organometallic ferrocene-based molecule, ferrocenyl-bis-thieno[3,2-<i>b</i>]thiophene-2-carboxylate (FcTTPc), with inherent carboxylate and thiophene functionalities surrounding the central ferrocene motif, is meticulously designed and synthesized for the modification of the perovskite/ETL interface. The carboxylate and thiophene groups in the FcTTPc molecule interact strongly with perovskite components, effectively passivating interface defects. Furthermore, the thiophene group of FcTTPc can engage in robust π–π interactions with the ETL, thereby enhancing interface charge transport. Following the interface modification with FcTTPc, an improved alignment of energy levels is achieved, significantly optimizing carrier transport. Due to the interface modification via the FcTTPc molecule, the champion PSC achieves a PCE of 25.39%. The FcTTPc-modified devices maintained over 96% of their initial efficiency under 40% relative humidity conditions for 1500 h.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"21 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01433","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There is a significant challenge of charge recombination at the perovskite/electron transport layer (ETL), coupled with the need of optimized interface charge transfer in inverted perovskite solar cells (PSCs). In this work, an organometallic ferrocene-based molecule, ferrocenyl-bis-thieno[3,2-b]thiophene-2-carboxylate (FcTTPc), with inherent carboxylate and thiophene functionalities surrounding the central ferrocene motif, is meticulously designed and synthesized for the modification of the perovskite/ETL interface. The carboxylate and thiophene groups in the FcTTPc molecule interact strongly with perovskite components, effectively passivating interface defects. Furthermore, the thiophene group of FcTTPc can engage in robust π–π interactions with the ETL, thereby enhancing interface charge transport. Following the interface modification with FcTTPc, an improved alignment of energy levels is achieved, significantly optimizing carrier transport. Due to the interface modification via the FcTTPc molecule, the champion PSC achieves a PCE of 25.39%. The FcTTPc-modified devices maintained over 96% of their initial efficiency under 40% relative humidity conditions for 1500 h.

Abstract Image

通过有机金属二茂铁分子进行界面调节,实现反向包晶太阳能电池
包晶石/电子传输层(ETL)上的电荷重组是一项重大挑战,同时还需要优化倒置包晶石太阳能电池(PSC)中的界面电荷转移。在这项研究中,我们精心设计并合成了一种基于二茂铁的有机金属分子--二茂铁基-双噻吩并[3,2-b]噻吩-2-羧酸酯(FcTTPc),该分子在二茂铁中心基团周围具有固有的羧酸酯和噻吩官能团,用于修饰包晶石/ETL界面。FcTTPc 分子中的羧酸根和噻吩基团与包晶成分相互作用强烈,可有效钝化界面缺陷。此外,FcTTPc 的噻吩基团还能与 ETL 发生强烈的 π-π 相互作用,从而增强界面电荷传输。用 FcTTPc 修饰界面后,能级的排列得到改善,从而大大优化了载流子传输。由于通过 FcTTPc 分子对界面进行了修饰,冠军 PSC 的 PCE 达到了 25.39%。在 40% 的相对湿度条件下,经过 FcTTPc 修饰的器件在 1500 小时内保持了 96% 以上的初始效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信