{"title":"Temperature and biodiversity influence community stability differently in birds and fishes","authors":"Shyamolina Ghosh, Blake Matthews, Owen L. Petchey","doi":"10.1038/s41559-024-02493-7","DOIUrl":null,"url":null,"abstract":"Determining the factors that affect community stability is crucial to understanding the maintenance of biodiversity and ecosystem functioning in the face of global warming. We investigated how four temperature components (that is, median, variability, trend and extremes) affected diversity–synchrony–stability relationships for 1,246 bird and 580 fish communities from temperate regions. We hypothesized a stabilizing effect on the community if the variation in species’ response to changing median temperature decreases overall community synchrony (hypothesis H1) and if temperature extremes reduce interspecific synchrony at extreme abundances due to variation in species’ thermal tolerance limits (hypothesis H2). We found support for H1 in fish and for H2 in bird communities. Here we showed that the abiotic components (that is, the median, variability, trend and extremes of temperature) had more indirect effects on community stability, predominantly by affecting the biotic components (that is, diversity, synchrony). Considering various temperature components’ direct as well as indirect impacts on stability for terrestrial versus aquatic communities will improve our mechanistic understanding of biodiversity change in response to global climatic stressors. Four temperature components are shown to have different effects on diversity–synchrony–stability relationships in 1,246 bird communities versus 580 fish communities from temperate regions.","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"8 10","pages":"1835-1846"},"PeriodicalIF":13.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41559-024-02493-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the factors that affect community stability is crucial to understanding the maintenance of biodiversity and ecosystem functioning in the face of global warming. We investigated how four temperature components (that is, median, variability, trend and extremes) affected diversity–synchrony–stability relationships for 1,246 bird and 580 fish communities from temperate regions. We hypothesized a stabilizing effect on the community if the variation in species’ response to changing median temperature decreases overall community synchrony (hypothesis H1) and if temperature extremes reduce interspecific synchrony at extreme abundances due to variation in species’ thermal tolerance limits (hypothesis H2). We found support for H1 in fish and for H2 in bird communities. Here we showed that the abiotic components (that is, the median, variability, trend and extremes of temperature) had more indirect effects on community stability, predominantly by affecting the biotic components (that is, diversity, synchrony). Considering various temperature components’ direct as well as indirect impacts on stability for terrestrial versus aquatic communities will improve our mechanistic understanding of biodiversity change in response to global climatic stressors. Four temperature components are shown to have different effects on diversity–synchrony–stability relationships in 1,246 bird communities versus 580 fish communities from temperate regions.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.