{"title":"DF-1-Derived exosomes mediate transmission of reticuloendotheliosis virus and resist REV-specific antibodies.","authors":"Zhen Wang, Huizhen Cui, Yawen Zhang, Wanli Sun, Wenjie Yang, Peng Zhao","doi":"10.1186/s12985-024-02445-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Reticuloendotheliosis virus (REV), a member of the family Retroviridae, is a hot area of research, and a previous study showed that exosomes purified from REV-positive semen were not blocked by REV-specific neutralizing antibodies and established productive infections.</p><p><strong>Methods: </strong>To further verify the infectivity of exosomes from REV-infected cells, we isolated and purified exosomes from REV-infected DF-1 cells and identified them using Western blot and a transmission electron microscope. We then inoculated 7-day-old embryonated eggs, 1-day-old chicks and 23-week-old hens with and without antibody treatment. REV was administered simultaneously as a control.</p><p><strong>Results: </strong>In the absence of antibodies, the results indicated that REV-exosomes and REV could infect chicks, resulting in viremia and viral shedding, compared with the infection caused by REV, REV-exosomes reduced the hatching rate and increased mortality after hatching, causing severe growth inhibition and immune organ damage in 1-day-old chicks; both REV and REV-exosomes also could infect hens, however, lead to transient infection. In the presence of antibodies, REV-exosomes were not blocked by REV-specific neutralizing antibodies and infected 7-day-old embryonated eggs. However, REV could not infect 1-day-old chicks and 23-week-old hens.</p><p><strong>Conclusion: </strong>In this study, we compared the infectious ability of REV-exosomes and REV, REV-exosomes could escape from REV-specific neutralizing antibodies in embryonated eggs, providing new insights into the immune escape mechanism of REV.</p>","PeriodicalId":23616,"journal":{"name":"Virology Journal","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12985-024-02445-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Reticuloendotheliosis virus (REV), a member of the family Retroviridae, is a hot area of research, and a previous study showed that exosomes purified from REV-positive semen were not blocked by REV-specific neutralizing antibodies and established productive infections.
Methods: To further verify the infectivity of exosomes from REV-infected cells, we isolated and purified exosomes from REV-infected DF-1 cells and identified them using Western blot and a transmission electron microscope. We then inoculated 7-day-old embryonated eggs, 1-day-old chicks and 23-week-old hens with and without antibody treatment. REV was administered simultaneously as a control.
Results: In the absence of antibodies, the results indicated that REV-exosomes and REV could infect chicks, resulting in viremia and viral shedding, compared with the infection caused by REV, REV-exosomes reduced the hatching rate and increased mortality after hatching, causing severe growth inhibition and immune organ damage in 1-day-old chicks; both REV and REV-exosomes also could infect hens, however, lead to transient infection. In the presence of antibodies, REV-exosomes were not blocked by REV-specific neutralizing antibodies and infected 7-day-old embryonated eggs. However, REV could not infect 1-day-old chicks and 23-week-old hens.
Conclusion: In this study, we compared the infectious ability of REV-exosomes and REV, REV-exosomes could escape from REV-specific neutralizing antibodies in embryonated eggs, providing new insights into the immune escape mechanism of REV.
期刊介绍:
Virology Journal is an open access, peer reviewed journal that considers articles on all aspects of virology, including research on the viruses of animals, plants and microbes. The journal welcomes basic research as well as pre-clinical and clinical studies of novel diagnostic tools, vaccines and anti-viral therapies.
The Editorial policy of Virology Journal is to publish all research which is assessed by peer reviewers to be a coherent and sound addition to the scientific literature, and puts less emphasis on interest levels or perceived impact.