hUC-MSC Combined with DHEA Alleviates Ovarian Senescence in Naturally Aging Mice through Enhancing Antioxidant Capacity and Inhibiting Inflammatory Response.
Chun-Yi Guan, Dan Zhang, Xue-Cheng Sun, Xu Ma, Hong-Fei Xia
{"title":"hUC-MSC Combined with DHEA Alleviates Ovarian Senescence in Naturally Aging Mice through Enhancing Antioxidant Capacity and Inhibiting Inflammatory Response.","authors":"Chun-Yi Guan, Dan Zhang, Xue-Cheng Sun, Xu Ma, Hong-Fei Xia","doi":"10.1155/2024/3100942","DOIUrl":null,"url":null,"abstract":"<p><p>The ovary is an important organ for women to maintain reproductive and endocrine functions. Ovarian aging can lead to female reproductive aging, which is a key factor causing rapid aging of the female body. Umbilical cord-derived MSCs (UC-MSCs) play a therapeutic role in various degenerative diseases. Dehydroepiandrosterone (DHEA) is widely used in the treatment of reversing oocyte quality. However, it is unclear whether UC-MSCs combined with DHEA supplementation can improve ovarian senescence in naturally aging mice. To address this question, we studied the influence of the combination of human UC-MSCs (hUC-MSCs) and DHEA on ovarian morphology and function in naturally aging mice. The results showed a significant augmentation in the number of primary follicles, as well as a significant upregulation of estradiol (E2), follicle-stimulating hormone (FSH), and anti-Mullerian hormone (AMH) hormone levels, and a significant increase in survival rate in naturally aging mice treated by hUC-MSCs and DHEA. Moreover, the combination of hUC-MSCs and DHEA significantly reduced the reactive oxygen species (ROS) level and downregulated the expression levels of proinflammatory factors IL-6, IL-18, and TNF-<i>α</i>. Furthermore, the PI3K/AKT/mTOR pathway was inhibited. Conclusively, the combination therapy of hUC-MSC + DHEA contributed to restore ovarian function in aging mice and extend their lifespan by restoring hormone levels and inhibiting inflammatory factors.</p>","PeriodicalId":21962,"journal":{"name":"Stem Cells International","volume":"2024 ","pages":"3100942"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/3100942","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The ovary is an important organ for women to maintain reproductive and endocrine functions. Ovarian aging can lead to female reproductive aging, which is a key factor causing rapid aging of the female body. Umbilical cord-derived MSCs (UC-MSCs) play a therapeutic role in various degenerative diseases. Dehydroepiandrosterone (DHEA) is widely used in the treatment of reversing oocyte quality. However, it is unclear whether UC-MSCs combined with DHEA supplementation can improve ovarian senescence in naturally aging mice. To address this question, we studied the influence of the combination of human UC-MSCs (hUC-MSCs) and DHEA on ovarian morphology and function in naturally aging mice. The results showed a significant augmentation in the number of primary follicles, as well as a significant upregulation of estradiol (E2), follicle-stimulating hormone (FSH), and anti-Mullerian hormone (AMH) hormone levels, and a significant increase in survival rate in naturally aging mice treated by hUC-MSCs and DHEA. Moreover, the combination of hUC-MSCs and DHEA significantly reduced the reactive oxygen species (ROS) level and downregulated the expression levels of proinflammatory factors IL-6, IL-18, and TNF-α. Furthermore, the PI3K/AKT/mTOR pathway was inhibited. Conclusively, the combination therapy of hUC-MSC + DHEA contributed to restore ovarian function in aging mice and extend their lifespan by restoring hormone levels and inhibiting inflammatory factors.
期刊介绍:
Stem Cells International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies in all areas of stem cell biology and applications. The journal will consider basic, translational, and clinical research, including animal models and clinical trials.
Topics covered include, but are not limited to: embryonic stem cells; induced pluripotent stem cells; tissue-specific stem cells; stem cell differentiation; genetics and epigenetics; cancer stem cells; stem cell technologies; ethical, legal, and social issues.