Development and External Validation of an Artificial Intelligence-Based Method for Scalable Chest Radiograph Diagnosis: A Multi-Country Cross-Sectional Study.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2024-08-06 eCollection Date: 2024-01-01 DOI:10.34133/research.0426
Zeye Liu, Jing Xu, Chengliang Yin, Guojing Han, Yue Che, Ge Fan, Xiaofei Li, Lixin Xie, Lei Bao, Zimin Peng, Jinduo Wang, Yan Chen, Fengwen Zhang, Wenbin Ouyang, Shouzheng Wang, Junwei Guo, Yanqiu Ma, Xiangzhi Meng, Taibing Fan, Aihua Zhi, Dawaciren, Kang Yi, Tao You, Yuejin Yang, Jue Liu, Yi Shi, Yuan Huang, Xiangbin Pan
{"title":"Development and External Validation of an Artificial Intelligence-Based Method for Scalable Chest Radiograph Diagnosis: A Multi-Country Cross-Sectional Study.","authors":"Zeye Liu, Jing Xu, Chengliang Yin, Guojing Han, Yue Che, Ge Fan, Xiaofei Li, Lixin Xie, Lei Bao, Zimin Peng, Jinduo Wang, Yan Chen, Fengwen Zhang, Wenbin Ouyang, Shouzheng Wang, Junwei Guo, Yanqiu Ma, Xiangzhi Meng, Taibing Fan, Aihua Zhi, Dawaciren, Kang Yi, Tao You, Yuejin Yang, Jue Liu, Yi Shi, Yuan Huang, Xiangbin Pan","doi":"10.34133/research.0426","DOIUrl":null,"url":null,"abstract":"<p><p><b>Problem:</b> Chest radiography is a crucial tool for diagnosing thoracic disorders, but interpretation errors and a lack of qualified practitioners can cause delays in treatment. <b>Aim:</b> This study aimed to develop a reliable multi-classification artificial intelligence (AI) tool to improve the accuracy and efficiency of chest radiograph diagnosis. <b>Methods:</b> We developed a convolutional neural network (CNN) capable of distinguishing among 26 thoracic diagnoses. The model was trained and externally validated using 795,055 chest radiographs from 13 datasets across 4 countries. <b>Results:</b> The CNN model achieved an average area under the curve (AUC) of 0.961 across all 26 diagnoses in the testing set. COVID-19 detection achieved perfect accuracy (AUC 1.000, [95% confidence interval {CI}, 1.000 to 1.000]), while effusion or pleural effusion detection showed the lowest accuracy (AUC 0.8453, [95% CI, 0.8417 to 0.8489]). In external validation, the model demonstrated strong reproducibility and generalizability within the local dataset, achieving an AUC of 0.9634 for lung opacity detection (95% CI, 0.9423 to 0.9702). The CNN outperformed both radiologists and nonradiological physicians, particularly in trans-device image recognition. Even for diseases not specifically trained on, such as aortic dissection, the AI model showed considerable scalability and enhanced diagnostic accuracy for physicians of varying experience levels (all <i>P</i> < 0.05). Additionally, our model exhibited no gender bias (<i>P</i> > 0.05). <b>Conclusion:</b> The developed AI algorithm, now available as professional web-based software, substantively improves chest radiograph interpretation. This research advances medical imaging and offers substantial diagnostic support in clinical settings.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0426"},"PeriodicalIF":11.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301699/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0426","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Problem: Chest radiography is a crucial tool for diagnosing thoracic disorders, but interpretation errors and a lack of qualified practitioners can cause delays in treatment. Aim: This study aimed to develop a reliable multi-classification artificial intelligence (AI) tool to improve the accuracy and efficiency of chest radiograph diagnosis. Methods: We developed a convolutional neural network (CNN) capable of distinguishing among 26 thoracic diagnoses. The model was trained and externally validated using 795,055 chest radiographs from 13 datasets across 4 countries. Results: The CNN model achieved an average area under the curve (AUC) of 0.961 across all 26 diagnoses in the testing set. COVID-19 detection achieved perfect accuracy (AUC 1.000, [95% confidence interval {CI}, 1.000 to 1.000]), while effusion or pleural effusion detection showed the lowest accuracy (AUC 0.8453, [95% CI, 0.8417 to 0.8489]). In external validation, the model demonstrated strong reproducibility and generalizability within the local dataset, achieving an AUC of 0.9634 for lung opacity detection (95% CI, 0.9423 to 0.9702). The CNN outperformed both radiologists and nonradiological physicians, particularly in trans-device image recognition. Even for diseases not specifically trained on, such as aortic dissection, the AI model showed considerable scalability and enhanced diagnostic accuracy for physicians of varying experience levels (all P < 0.05). Additionally, our model exhibited no gender bias (P > 0.05). Conclusion: The developed AI algorithm, now available as professional web-based software, substantively improves chest radiograph interpretation. This research advances medical imaging and offers substantial diagnostic support in clinical settings.

基于人工智能的可扩展胸片诊断方法的开发和外部验证:多国横断面研究。
问题:胸片是诊断胸部疾病的重要工具,但判读错误和缺乏合格的从业人员会导致治疗延误。目的:本研究旨在开发一种可靠的多分类人工智能(AI)工具,以提高胸片诊断的准确性和效率。方法:我们开发了一种卷积神经网络:我们开发了一种卷积神经网络(CNN),能够区分 26 种胸部诊断。我们使用来自 4 个国家 13 个数据集的 795,055 张胸片对该模型进行了训练和外部验证。结果:在测试集中的所有 26 种诊断中,CNN 模型的平均曲线下面积 (AUC) 达到 0.961。COVID-19 检测达到了完美的准确度(AUC 1.000,[95% 置信区间{CI},1.000 至 1.000]),而渗出或胸腔积液检测的准确度最低(AUC 0.8453,[95% CI,0.8417 至 0.8489])。在外部验证中,该模型在本地数据集中表现出很强的可重复性和通用性,肺不张检测的 AUC 为 0.9634(95% CI,0.9423 至 0.9702)。CNN 的表现优于放射科医生和非放射科医生,尤其是在跨设备图像识别方面。即使对于主动脉夹层等没有经过专门训练的疾病,人工智能模型也显示出相当大的可扩展性,并提高了不同经验水平的医生的诊断准确性(所有 P < 0.05)。此外,我们的模型没有表现出性别偏见(P > 0.05)。结论所开发的人工智能算法现在可作为基于网络的专业软件使用,大大提高了胸片判读能力。这项研究推动了医学影像的发展,并为临床提供了大量的诊断支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信