In vivo assembly of bacterial partition condensates on circular supercoiled and linear DNA.

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hicham Sekkouri Alaoui, Valentin Quèbre, Linda Delimi, Jérôme Rech, Roxanne Debaugny-Diaz, Delphine Labourdette, Manuel Campos, François Cornet, Jean-Charles Walter, Jean-Yves Bouet
{"title":"In vivo assembly of bacterial partition condensates on circular supercoiled and linear DNA.","authors":"Hicham Sekkouri Alaoui, Valentin Quèbre, Linda Delimi, Jérôme Rech, Roxanne Debaugny-Diaz, Delphine Labourdette, Manuel Campos, François Cornet, Jean-Charles Walter, Jean-Yves Bouet","doi":"10.1111/mmi.15297","DOIUrl":null,"url":null,"abstract":"<p><p>In bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites. This complex assembles in a multi-step process and exhibits dynamic liquid-droplet properties. Despite various proposed models, the complete mechanism for partition complex assembly remains elusive. This study investigates the impact of DNA supercoiling on ParB DNA binding profiles in vivo, using the ParABS system of the plasmid F. We found that variations in DNA supercoiling does not significantly affect any steps in the assembly of the partition complex. Furthermore, physical modeling, leveraging ChIP-seq data from linear plasmids F, suggests that ParB sliding is restricted to approximately 2 Kbp from parS, highlighting the necessity for additional mechanisms beyond ParB sliding over DNA for concentrating ParB into condensates nucleated at parS. Finally, explicit simulations of a polymer coated with bound ParB suggest a dominant role for ParB-ParB interactions in DNA compaction within ParB condensates.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15297","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites. This complex assembles in a multi-step process and exhibits dynamic liquid-droplet properties. Despite various proposed models, the complete mechanism for partition complex assembly remains elusive. This study investigates the impact of DNA supercoiling on ParB DNA binding profiles in vivo, using the ParABS system of the plasmid F. We found that variations in DNA supercoiling does not significantly affect any steps in the assembly of the partition complex. Furthermore, physical modeling, leveraging ChIP-seq data from linear plasmids F, suggests that ParB sliding is restricted to approximately 2 Kbp from parS, highlighting the necessity for additional mechanisms beyond ParB sliding over DNA for concentrating ParB into condensates nucleated at parS. Finally, explicit simulations of a polymer coated with bound ParB suggest a dominant role for ParB-ParB interactions in DNA compaction within ParB condensates.

Abstract Image

细菌在环形超卷曲 DNA 和线性 DNA 上的活体分区凝聚体组装。
在细菌中,染色体和质粒的忠实 DNA 分离主要由 ParABS 系统介导。这些系统由 ParA ATPase、DNA 结合 ParB CTPase 和中心粒位点 parS 组成,负责协调新复制 DNA 副本的分离及其在细胞内的定位。准确的分离依赖于高分子量复合物的组装,该复合物由数百个从 parS 位点成核的 ParB 二聚体组成。这种复合体的组装需要多个步骤,并具有动态液滴特性。尽管提出了各种模型,但分区复合物组装的完整机制仍然难以捉摸。本研究利用质粒 F 的 ParABS 系统研究了 DNA 超卷曲对体内 ParB DNA 结合曲线的影响。我们发现,DNA 超卷曲的变化不会对分区复合物组装的任何步骤产生显著影响。此外,利用线性质粒 F 的 ChIP-seq 数据进行的物理建模表明,ParB 的滑动限制在距离 parS 约 2 Kbp 的范围内,这突出表明除了 ParB 在 DNA 上滑动之外,还需要其他机制将 ParB 集中到 parS 处的凝聚体中。最后,对包裹有结合 ParB 的聚合物进行的显式模拟表明,ParB-ParB 相互作用在 ParB 凝聚体内部的 DNA 压实过程中起着主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信