Interactive regulation of immune-related resistance genes with salicylic acid and jasmonic acid signaling in systemic acquired resistance in the Xanthomonas–Brassica pathosystem

IF 4 3区 生物学 Q1 PLANT SCIENCES
Md Al Mamun , Bok-Rye Lee , Sang-Hyun Park , Muchamad Muchlas , Dong-Won Bae , Tae-Hwan Kim
{"title":"Interactive regulation of immune-related resistance genes with salicylic acid and jasmonic acid signaling in systemic acquired resistance in the Xanthomonas–Brassica pathosystem","authors":"Md Al Mamun ,&nbsp;Bok-Rye Lee ,&nbsp;Sang-Hyun Park ,&nbsp;Muchamad Muchlas ,&nbsp;Dong-Won Bae ,&nbsp;Tae-Hwan Kim","doi":"10.1016/j.jplph.2024.154323","DOIUrl":null,"url":null,"abstract":"<div><p>Pathogen-responsive immune-related genes (resistance genes [R-genes]) and hormones are crucial mediators of systemic acquired resistance (SAR). However, their integrated functions in regulating SAR signaling components in local and distal leaves remain largely unknown. To characterize SAR in the <em>Xanthomonas campestris</em> pv. <em>campestris (Xcc)</em>–<em>Brassica napus</em> pathosystem, the responses of R-genes, (leaf and phloem) hormone levels, H<sub>2</sub>O<sub>2</sub> levels, and Ca<sup>2+</sup> signaling-related genes were assessed in local and distal leaves of plants exposed to four <em>Xcc</em>-treatments: Non-inoculation (control), only secondary <em>Xcc</em>-inoculation in distal leaves (C-Xcc), only primary <em>Xcc</em>-inoculation in local leaves (Xcc), and both primary and secondary <em>Xcc</em>-inoculation (X-Xcc). The primary <em>Xcc</em>-inoculation provoked disease symptoms as evidenced by enlarged destructive necrosis in the local leaves of Xcc and X-Xcc plants 7 days post-inoculation. Comparing visual symptoms in distal leaves 5 days post-secondary inoculation, yellowish necrotic lesions were clearly observed in non <em>Xcc</em>-primed plants (C-Xcc), whereas no visual symptom was developed in <em>Xcc</em>-primed plants (X-Xcc), demonstrating SAR. Pathogen resistance in X-Xcc plants was characterized by distinct upregulations in expression of the PAMP-triggered immunity (PTI)-related kinase-encoding gene, <em>BIK1</em>, the (CC-NB-LRR-type) R-gene, <em>ZAR1</em>, and its signaling-related gene, <em>NDR1</em>, with a concurrent enhancement of the kinase-encoding gene, <em>MAPK6</em>, and a depression of the (TIR-NB-LRR-type) R-gene, <em>TAO1</em>, and its signaling-related gene, <em>SGT1</em>, in distal leaves. Further, in X-Xcc plants, higher salicylic acid (SA) and jasmonic acid (JA) levels, both in phloem and distal leaves, were accompanied by enhanced expressions of the SA-signaling gene, <em>NPR3</em>, the JA-signaling genes, <em>LOX2</em> and <em>PDF1.2</em>, and the Ca<sup>2+</sup>-signaling genes, <em>CAS</em> and <em>CBP60g</em>. However, in distal leaves of C-Xcc plants, an increase in SA level resulted in an antagonistic depression of JA, which enhanced only SA-dependent signaling, <em>EDS1</em> and <em>NPR1</em>. These results demonstrate that primary <em>Xcc</em>-inoculation in local leaves induces resistance to subsequent pathogen attack by upregulating <em>BIK1-ZAR1</em>-mediated synergistic interactions with SA and JA signaling as a crucial component of SAR.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"302 ","pages":"Article 154323"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001548","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogen-responsive immune-related genes (resistance genes [R-genes]) and hormones are crucial mediators of systemic acquired resistance (SAR). However, their integrated functions in regulating SAR signaling components in local and distal leaves remain largely unknown. To characterize SAR in the Xanthomonas campestris pv. campestris (Xcc)Brassica napus pathosystem, the responses of R-genes, (leaf and phloem) hormone levels, H2O2 levels, and Ca2+ signaling-related genes were assessed in local and distal leaves of plants exposed to four Xcc-treatments: Non-inoculation (control), only secondary Xcc-inoculation in distal leaves (C-Xcc), only primary Xcc-inoculation in local leaves (Xcc), and both primary and secondary Xcc-inoculation (X-Xcc). The primary Xcc-inoculation provoked disease symptoms as evidenced by enlarged destructive necrosis in the local leaves of Xcc and X-Xcc plants 7 days post-inoculation. Comparing visual symptoms in distal leaves 5 days post-secondary inoculation, yellowish necrotic lesions were clearly observed in non Xcc-primed plants (C-Xcc), whereas no visual symptom was developed in Xcc-primed plants (X-Xcc), demonstrating SAR. Pathogen resistance in X-Xcc plants was characterized by distinct upregulations in expression of the PAMP-triggered immunity (PTI)-related kinase-encoding gene, BIK1, the (CC-NB-LRR-type) R-gene, ZAR1, and its signaling-related gene, NDR1, with a concurrent enhancement of the kinase-encoding gene, MAPK6, and a depression of the (TIR-NB-LRR-type) R-gene, TAO1, and its signaling-related gene, SGT1, in distal leaves. Further, in X-Xcc plants, higher salicylic acid (SA) and jasmonic acid (JA) levels, both in phloem and distal leaves, were accompanied by enhanced expressions of the SA-signaling gene, NPR3, the JA-signaling genes, LOX2 and PDF1.2, and the Ca2+-signaling genes, CAS and CBP60g. However, in distal leaves of C-Xcc plants, an increase in SA level resulted in an antagonistic depression of JA, which enhanced only SA-dependent signaling, EDS1 and NPR1. These results demonstrate that primary Xcc-inoculation in local leaves induces resistance to subsequent pathogen attack by upregulating BIK1-ZAR1-mediated synergistic interactions with SA and JA signaling as a crucial component of SAR.

免疫相关抗性基因与水杨酸和茉莉酸信号在黄单胞菌-布拉西卡病原系统的系统获得性抗性中的交互调控。
病原体反应性免疫相关基因(抗性基因[R-genes])和激素是系统获得性抗性(SAR)的关键介质。然而,它们在局部和远端叶片中调节 SAR 信号成分的综合功能在很大程度上仍不为人所知。为了描述野油菜黄单胞菌(Xanthomonas campestris pv. campestris,Xcc)-油菜病理系统中的 SAR 特性,我们评估了 R 基因、(叶片和韧皮部)激素水平、H2O2 水平和 Ca2+ 信号相关基因在暴露于四种 Xcc 处理的植物的局部和远端叶片中的反应:未接种(对照)、仅在远端叶片中进行二次 Xcc 接种(C-Xcc)、仅在局部叶片中进行一次 Xcc 接种(Xcc)以及同时进行一次和二次 Xcc 接种(X-Xcc)。接种后 7 天,Xcc 和 X-Xcc 植株的局部叶片出现破坏性坏死,这表明初级 Xcc 接种引发了病害症状。比较二次接种后 5 天远端叶片的视觉症状,未接种 Xcc 的植株(C-Xcc)明显出现淡黄色坏死病斑,而接种 Xcc 的植株(X-Xcc)则未出现任何视觉症状,这证明了 SAR 的存在。X-Xcc 植株的病原体抗性表现为与 PAMP 触发免疫(PTI)相关的激酶编码基因 BIK1、(CC-NB-LRR 型)R 基因 ZAR1、及其信号相关基因 NDR1 的表达,与此同时,激酶编码基因 MAPK6 的表达增强,(TIR-NB-LRR 型)R 基因 TAO1 及其信号相关基因 SGT1 在远端叶片中的表达减弱。此外,在 X-Xcc 植株中,韧皮部和远端叶片中的水杨酸(SA)和茉莉酸(JA)水平升高的同时,SA 信号基因 NPR3、JA 信号基因 LOX2 和 PDF1.2 以及 Ca2+ 信号基因 CAS 和 CBP60g 的表达也增强了。然而,在 C-Xcc 植株的远端叶片中,SA 水平的增加会导致 JA 的拮抗抑制,而 JA 只增强依赖于 SA 的信号转导、EDS1 和 NPR1。这些结果表明,通过上调 BIK1-ZAR1 介导的与作为 SAR 重要组成部分的 SA 和 JA 信号的协同交互作用,在局部叶片中进行初级 Xcc 接种可诱导对后续病原体侵袭的抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信