Role of ROS and autophagy in the pathological process of atherosclerosis.

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Liyuan Zhu, Yingnan Liao, Bo Jiang
{"title":"Role of ROS and autophagy in the pathological process of atherosclerosis.","authors":"Liyuan Zhu, Yingnan Liao, Bo Jiang","doi":"10.1007/s13105-024-01039-6","DOIUrl":null,"url":null,"abstract":"<p><p>Activation of autophagy and production of reactive oxygen species occur at various stages of atherosclerosis. To clarify the role and mechanism of autophagy and reactive oxygen species in atherosclerosis is of great significance to the prevention and treatment of atherosclerosis. Recent studies have shown that basal autophagy plays an important role in protecting cells from oxidative stress, reducing apoptosis and enhancing atherosclerotic plaque stability. Autophagy deficiency and excessive accumulation of reactive oxygen species can impair the function of endothelial cells, macrophages and smooth muscle cells, trigger autophagic cell death, and lead to instability and even rupture of plaques. However, the main signaling pathways regulating autophagy, the molecular mechanisms of autophagy and reactive oxygen species interaction, how they are initiated and distributed in plaques, and how they affect atherosclerosis progression, remain to be clarified. At present, there is no autophagy inducer used to treat atherosclerosis clinically. Therefore, it is urgent to clarify the mechanism of autophagy and find new targets for autophagy. Antioxidant agents generally have defects such as low reactive oxygen species scavenging efficiency and high cytotoxicity. Highly potent autophagy inducers and reactive oxygen species scavengers still need to be further developed and validated to provide more possibilities for innovative treatments for atherosclerosis.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-024-01039-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Activation of autophagy and production of reactive oxygen species occur at various stages of atherosclerosis. To clarify the role and mechanism of autophagy and reactive oxygen species in atherosclerosis is of great significance to the prevention and treatment of atherosclerosis. Recent studies have shown that basal autophagy plays an important role in protecting cells from oxidative stress, reducing apoptosis and enhancing atherosclerotic plaque stability. Autophagy deficiency and excessive accumulation of reactive oxygen species can impair the function of endothelial cells, macrophages and smooth muscle cells, trigger autophagic cell death, and lead to instability and even rupture of plaques. However, the main signaling pathways regulating autophagy, the molecular mechanisms of autophagy and reactive oxygen species interaction, how they are initiated and distributed in plaques, and how they affect atherosclerosis progression, remain to be clarified. At present, there is no autophagy inducer used to treat atherosclerosis clinically. Therefore, it is urgent to clarify the mechanism of autophagy and find new targets for autophagy. Antioxidant agents generally have defects such as low reactive oxygen species scavenging efficiency and high cytotoxicity. Highly potent autophagy inducers and reactive oxygen species scavengers still need to be further developed and validated to provide more possibilities for innovative treatments for atherosclerosis.

Abstract Image

ROS 和自噬在动脉粥样硬化病理过程中的作用
动脉粥样硬化的不同阶段都会出现自噬激活和活性氧产生。阐明自噬和活性氧在动脉粥样硬化中的作用和机制,对预防和治疗动脉粥样硬化具有重要意义。最新研究表明,基础自噬在保护细胞免受氧化应激、减少细胞凋亡和增强动脉粥样硬化斑块稳定性方面发挥着重要作用。自噬缺乏和活性氧过度积累会损害内皮细胞、巨噬细胞和平滑肌细胞的功能,引发自噬细胞死亡,导致斑块不稳定甚至破裂。然而,调控自噬的主要信号通路、自噬与活性氧相互作用的分子机制、自噬与活性氧如何在斑块中启动和分布,以及它们如何影响动脉粥样硬化的进展等问题仍有待明确。目前,临床上还没有用于治疗动脉粥样硬化的自噬诱导剂。因此,阐明自噬机制、寻找自噬新靶点迫在眉睫。抗氧化剂普遍存在清除活性氧效率低、细胞毒性大等缺陷。高效的自噬诱导剂和活性氧清除剂仍有待进一步开发和验证,从而为动脉粥样硬化的创新治疗提供更多可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of physiology and biochemistry
Journal of physiology and biochemistry 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信