Meddy N. Bongers-Karmaoui, Alexander Hirsch, Ricardo P. J. Budde, Arno A. W. Roest, Vincent W. V. Jaddoe, Romy Gaillard
{"title":"The cardiovascular exercise response in children with overweight or obesity measured by cardiovascular magnetic resonance imaging","authors":"Meddy N. Bongers-Karmaoui, Alexander Hirsch, Ricardo P. J. Budde, Arno A. W. Roest, Vincent W. V. Jaddoe, Romy Gaillard","doi":"10.1038/s41366-024-01589-1","DOIUrl":null,"url":null,"abstract":"Overweight and obesity are among the main causes of cardiovascular diseases. Exercise testing can aid in the early detection of subtle cardiac dysfunction not present in rest. We hypothesized that the cardiovascular response to exercise is impaired among children with overweight or obesity, characterized by the inability of the cardiovascular system to adapt to exercise by increasing cardiac volumes and blood pressure. We performed a cardiovascular stress test to investigate whether the cardiovascular exercise response is altered in children with overweight and obesity, as compared to children with a normal weight. A subgroup of the Generation R population-based prospective cohort study, consisting of 41 children with overweight or obesity and 166 children with a normal weight with a mean age of 16 years, performed an isometric exercise. Continuous heart rate and blood pressure were measured during rest, exercise and recovery. Cardiovascular magnetic resonance (CMR) measurements were performed during rest and exercise. Higher BMI was associated with a higher resting systolic and diastolic blood pressure (difference: 0.24 SDS (95% CI 0.10, 0.37) and 0.20 SDS (95% CI 0.06, 0.33)) and lower systolic and diastolic blood pressure increases from rest to peak exercise (−0.11 SDS (95% CI −0.20, −0.03) and −0.07 SDS (95% CI −0.07, −0.01)). BMI was also associated with a slower decrease in systolic and diastolic blood pressure during recovery (p values < 0.05). Higher childhood BMI was associated with lower BSA corrected left ventricular mass, end-diastolic volume and stroke volume (p values < 0.05). There were no associations of childhood BMI with the cardiac response to exercise measured by heart rate and CMR measurements. Childhood BMI is, across the full range, associated with a blunted blood pressure response to static exercise but there were no differences in cardiac response to exercise. Our findings suggest that adiposity may especially affect the vascular exercise reaction without affecting cardiac response.","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41366-024-01589-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Overweight and obesity are among the main causes of cardiovascular diseases. Exercise testing can aid in the early detection of subtle cardiac dysfunction not present in rest. We hypothesized that the cardiovascular response to exercise is impaired among children with overweight or obesity, characterized by the inability of the cardiovascular system to adapt to exercise by increasing cardiac volumes and blood pressure. We performed a cardiovascular stress test to investigate whether the cardiovascular exercise response is altered in children with overweight and obesity, as compared to children with a normal weight. A subgroup of the Generation R population-based prospective cohort study, consisting of 41 children with overweight or obesity and 166 children with a normal weight with a mean age of 16 years, performed an isometric exercise. Continuous heart rate and blood pressure were measured during rest, exercise and recovery. Cardiovascular magnetic resonance (CMR) measurements were performed during rest and exercise. Higher BMI was associated with a higher resting systolic and diastolic blood pressure (difference: 0.24 SDS (95% CI 0.10, 0.37) and 0.20 SDS (95% CI 0.06, 0.33)) and lower systolic and diastolic blood pressure increases from rest to peak exercise (−0.11 SDS (95% CI −0.20, −0.03) and −0.07 SDS (95% CI −0.07, −0.01)). BMI was also associated with a slower decrease in systolic and diastolic blood pressure during recovery (p values < 0.05). Higher childhood BMI was associated with lower BSA corrected left ventricular mass, end-diastolic volume and stroke volume (p values < 0.05). There were no associations of childhood BMI with the cardiac response to exercise measured by heart rate and CMR measurements. Childhood BMI is, across the full range, associated with a blunted blood pressure response to static exercise but there were no differences in cardiac response to exercise. Our findings suggest that adiposity may especially affect the vascular exercise reaction without affecting cardiac response.
期刊介绍:
The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders.
We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.