Mehmet Akif Durmuş, Selda Kömeç, Abdurrahman Gülmez
{"title":"Artificial intelligence applications for immunology laboratory: image analysis and classification study of IIF photos.","authors":"Mehmet Akif Durmuş, Selda Kömeç, Abdurrahman Gülmez","doi":"10.1007/s12026-024-09527-z","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is increasingly being used in medicine to enhance the speed and accuracy of disease diagnosis and treatment. AI-based image analysis is expected to play a crucial role in future healthcare facilities and laboratories, offering improved precision and cost-effectiveness. As technology advances, the requirement for specialized software knowledge to utilize AI applications is diminishing. Our study will examine the advantages and challenges of employing AI-based image analysis in the field of immunology and will investigate whether physicians without software expertise can use MS Azure Portal for ANA IIF test classification and image analysis. This is the first study to perform Hep-2 image analysis using MS Azure Portal. We will also assess the potential for AI applications to aid physicians in interpreting ANA IIF results in immunology laboratories. The study was designed in four stages by two specialists. Stage 1: creation of an image library, Stage 2: finding an artificial intelligence application, Stage 3: uploading images and training artificial intelligence, Stage 4: performance analysis of the artificial intelligence application. In the first training, the average pattern identification accuracy for 72 testing images was 81.94%. After the second training, this accuracy increased to 87.5%. Patterns Precision improved from 71.42 to 79.96% after the second training. As a result, the number of correctly identified patterns and their accuracy increased with the second training process. Artificial intelligence-based image analysis shows promising potential. This technology is expected to become essential in healthcare facility laboratories, offering higher accuracy rates and lower costs.</p>","PeriodicalId":13389,"journal":{"name":"Immunologic Research","volume":" ","pages":"1277-1287"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunologic Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09527-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) is increasingly being used in medicine to enhance the speed and accuracy of disease diagnosis and treatment. AI-based image analysis is expected to play a crucial role in future healthcare facilities and laboratories, offering improved precision and cost-effectiveness. As technology advances, the requirement for specialized software knowledge to utilize AI applications is diminishing. Our study will examine the advantages and challenges of employing AI-based image analysis in the field of immunology and will investigate whether physicians without software expertise can use MS Azure Portal for ANA IIF test classification and image analysis. This is the first study to perform Hep-2 image analysis using MS Azure Portal. We will also assess the potential for AI applications to aid physicians in interpreting ANA IIF results in immunology laboratories. The study was designed in four stages by two specialists. Stage 1: creation of an image library, Stage 2: finding an artificial intelligence application, Stage 3: uploading images and training artificial intelligence, Stage 4: performance analysis of the artificial intelligence application. In the first training, the average pattern identification accuracy for 72 testing images was 81.94%. After the second training, this accuracy increased to 87.5%. Patterns Precision improved from 71.42 to 79.96% after the second training. As a result, the number of correctly identified patterns and their accuracy increased with the second training process. Artificial intelligence-based image analysis shows promising potential. This technology is expected to become essential in healthcare facility laboratories, offering higher accuracy rates and lower costs.
期刊介绍:
IMMUNOLOGIC RESEARCH represents a unique medium for the presentation, interpretation, and clarification of complex scientific data. Information is presented in the form of interpretive synthesis reviews, original research articles, symposia, editorials, and theoretical essays. The scope of coverage extends to cellular immunology, immunogenetics, molecular and structural immunology, immunoregulation and autoimmunity, immunopathology, tumor immunology, host defense and microbial immunity, including viral immunology, immunohematology, mucosal immunity, complement, transplantation immunology, clinical immunology, neuroimmunology, immunoendocrinology, immunotoxicology, translational immunology, and history of immunology.