Predicting Promoters in Multiple Prokaryotes with Prompt.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Qimeng Du, Yixue Guo, Junpeng Zhang, Fuping Lu, Chong Peng, Chichun Zhou
{"title":"Predicting Promoters in Multiple Prokaryotes with Prompt.","authors":"Qimeng Du, Yixue Guo, Junpeng Zhang, Fuping Lu, Chong Peng, Chichun Zhou","doi":"10.1007/s12539-024-00637-8","DOIUrl":null,"url":null,"abstract":"<p><p>Promoters are important cis-regulatory elements for the regulation of gene expression, and their accurate predictions are crucial for elucidating the biological functions and potential mechanisms of genes. Many previous prokaryotic promoter prediction methods are encouraging in terms of the prediction performance, but most of them focus on the recognition of promoters in only one or a few bacterial species. Moreover, due to ignoring the promoter sequence motifs, the interpretability of predictions with existing methods is limited. In this work, we present a generalized method Prompt (Promoters in multiple prokaryotes) to predict promoters in 16 prokaryotes and improve the interpretability of prediction results. Prompt integrates three methods including RSK (Regression based on Selected k-mer), CL (Contrastive Learning) and MLP (Multilayer Perception), and employs a voting strategy to divide the datasets into high-confidence and low-confidence categories. Results on the promoter prediction tasks in 16 prokaryotes show that the accuracy (Accuracy, Matthews correlation coefficient) of Prompt is greater than 80% in highly credible datasets of 16 prokaryotes, and is greater than 90% in 12 prokaryotes, and Prompt performs the best compared with other existing methods. Moreover, by identifying promoter sequence motifs, Prompt can improve the interpretability of the predictions. Prompt is freely available at https://github.com/duqimeng/PromptPrompt , and will contribute to the research of promoters in prokaryote.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"814-828"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00637-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Promoters are important cis-regulatory elements for the regulation of gene expression, and their accurate predictions are crucial for elucidating the biological functions and potential mechanisms of genes. Many previous prokaryotic promoter prediction methods are encouraging in terms of the prediction performance, but most of them focus on the recognition of promoters in only one or a few bacterial species. Moreover, due to ignoring the promoter sequence motifs, the interpretability of predictions with existing methods is limited. In this work, we present a generalized method Prompt (Promoters in multiple prokaryotes) to predict promoters in 16 prokaryotes and improve the interpretability of prediction results. Prompt integrates three methods including RSK (Regression based on Selected k-mer), CL (Contrastive Learning) and MLP (Multilayer Perception), and employs a voting strategy to divide the datasets into high-confidence and low-confidence categories. Results on the promoter prediction tasks in 16 prokaryotes show that the accuracy (Accuracy, Matthews correlation coefficient) of Prompt is greater than 80% in highly credible datasets of 16 prokaryotes, and is greater than 90% in 12 prokaryotes, and Prompt performs the best compared with other existing methods. Moreover, by identifying promoter sequence motifs, Prompt can improve the interpretability of the predictions. Prompt is freely available at https://github.com/duqimeng/PromptPrompt , and will contribute to the research of promoters in prokaryote.

Abstract Image

利用 Prompt 预测多种原核生物的启动子
启动子是调控基因表达的重要顺式调控元件,准确预测启动子对于阐明基因的生物学功能和潜在机制至关重要。以往的许多原核生物启动子预测方法在预测性能方面令人鼓舞,但它们大多只侧重于识别一种或少数几种细菌的启动子。此外,由于忽略了启动子序列的母题,现有方法的预测结果可解释性有限。在这项工作中,我们提出了一种通用方法 Prompt(多种原核生物中的启动子),用于预测 16 种原核生物中的启动子,并提高了预测结果的可解释性。Prompt 整合了三种方法,包括 RSK(基于选择 k-mer 的回归)、CL(对比学习)和 MLP(多层感知),并采用投票策略将数据集分为高置信度和低置信度两类。对16种原核生物启动子预测任务的结果表明,在16种原核生物的高可信度数据集中,Prompt的准确率(Accuracy,马修斯相关系数)大于80%,在12种原核生物中大于90%,与其他现有方法相比,Prompt的表现最佳。此外,通过识别启动子序列母题,Prompt 还能提高预测结果的可解释性。Prompt 可在 https://github.com/duqimeng/PromptPrompt 免费获取,它将为原核生物启动子的研究做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信