Ying Liu, Mingxu Li, Rong Yang, Qinglong Meng, Dong-Ho Baek, Hyung-Tae Lim, Jae-Kwang Kim, Jou-Hyeon Ahn
{"title":"Immobilization and Catalytic Conversion of Polysulfide by In-Situ Generated Nickel in Hollow Carbon Fibers for High-Rate Lithium–Sulfur Batteries","authors":"Ying Liu, Mingxu Li, Rong Yang, Qinglong Meng, Dong-Ho Baek, Hyung-Tae Lim, Jae-Kwang Kim, Jou-Hyeon Ahn","doi":"10.1002/cssc.202401178","DOIUrl":null,"url":null,"abstract":"<p>Lithium–sulfur (Li−S) batteries are considered promising energy-storage systems because of their high theoretical energy density, low cost, and eco-friendliness. However, problems such as the shuttle effect can result in the loss of active materials, poor cyclability, and rapid capacity degradation. The utilization of a structural configuration that enhances electrochemical performance via dual adsorption–catalysis strategies can overcome the limitations of Li−S batteries. In this study, an integrated interlayer structure, in which hollow carbon fibers (HCFs) were modified with <i>in-situ</i>-generated Ni nanoparticles, was prepared by scalable one-step carbonization. Highly hierarchically porous HCFs act as the carbon skeleton and provide a continuous three-dimensional conductive network that enhances ion/electron diffusion. Ni nanoparticles with superior anchoring and catalytic abilities can prevent the shuttle effect and increase the conversion rate, thereby promoting the electrochemical performance. This synergistic effect resulted in a high capacity retention of 582 mAh g<sup>−1</sup> at 1 C after 100 cycles, providing an excellent rate capability of up to 3 C. The novel structure, wherein Ni nanoparticles are embedded in cotton-tissue-derived HCFs, provides a new avenue for enhancing electrochemical performance at high C rates. This results in a low-cost, sustainable, and high-performance hybrid material for the development of practical Li−S batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 2","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cssc.202401178","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium–sulfur (Li−S) batteries are considered promising energy-storage systems because of their high theoretical energy density, low cost, and eco-friendliness. However, problems such as the shuttle effect can result in the loss of active materials, poor cyclability, and rapid capacity degradation. The utilization of a structural configuration that enhances electrochemical performance via dual adsorption–catalysis strategies can overcome the limitations of Li−S batteries. In this study, an integrated interlayer structure, in which hollow carbon fibers (HCFs) were modified with in-situ-generated Ni nanoparticles, was prepared by scalable one-step carbonization. Highly hierarchically porous HCFs act as the carbon skeleton and provide a continuous three-dimensional conductive network that enhances ion/electron diffusion. Ni nanoparticles with superior anchoring and catalytic abilities can prevent the shuttle effect and increase the conversion rate, thereby promoting the electrochemical performance. This synergistic effect resulted in a high capacity retention of 582 mAh g−1 at 1 C after 100 cycles, providing an excellent rate capability of up to 3 C. The novel structure, wherein Ni nanoparticles are embedded in cotton-tissue-derived HCFs, provides a new avenue for enhancing electrochemical performance at high C rates. This results in a low-cost, sustainable, and high-performance hybrid material for the development of practical Li−S batteries.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology