Coordination of miR319-TaPCF8 with TaSPL14 orchestrates auxin signaling and biosynthesis to regulate plant height in common wheat.

IF 9.3 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Pingan Hao, Chao Jian, Chenyang Hao, Shujuan Liu, Jian Hou, Hongxia Liu, Haixia Liu, Xueyong Zhang, Huixian Zhao, Tian Li
{"title":"Coordination of miR319-TaPCF8 with TaSPL14 orchestrates auxin signaling and biosynthesis to regulate plant height in common wheat.","authors":"Pingan Hao, Chao Jian, Chenyang Hao, Shujuan Liu, Jian Hou, Hongxia Liu, Haixia Liu, Xueyong Zhang, Huixian Zhao, Tian Li","doi":"10.1111/jipb.13759","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat culms, comprising four to six internodes, are critically involved in determining plant height and lodging resistance, essential factors for field performance and regional adaptability. This study revealed the regulatory function of miR319 in common wheat plant height. Repression of tae-miR319 through short tandem target mimics (STTM) caused an increased plant height, while overexpression (OE) of tae-miR319 had the opposite effect. Overexpressing a miR319-resistant target gene TaPCF8 (rTaPCF8), increased plant height. TaPCF8 acted as a transcription repressor of downstream genes TaIAAs, which interact physically with TaSPL14. The significant differences of indole-3-acetic acid (IAA) contents indicate the involvement of auxin pathway in miR319-mediated plant height regulation. Finally, we identified two TaPCF8 haplotypes in global wheat collections. TaPCF8-5A-Hap2, as per association and evolution examinations, was subjected to strong substantial selection throughout wheat breeding. This haplotype, associated with shorter plant height, aligns with global breeding requirements. Consequently, in high-yield wheat breeding, we proposed a potential molecular marker for marker-assisted selection (MAS). Our findings offer fresh perspectives into the molecular mechanisms that underlie the miR319-TaPCF8 module's regulation of plant height by orchestrating auxin signaling and biosynthesis in wheat.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.13759","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Wheat culms, comprising four to six internodes, are critically involved in determining plant height and lodging resistance, essential factors for field performance and regional adaptability. This study revealed the regulatory function of miR319 in common wheat plant height. Repression of tae-miR319 through short tandem target mimics (STTM) caused an increased plant height, while overexpression (OE) of tae-miR319 had the opposite effect. Overexpressing a miR319-resistant target gene TaPCF8 (rTaPCF8), increased plant height. TaPCF8 acted as a transcription repressor of downstream genes TaIAAs, which interact physically with TaSPL14. The significant differences of indole-3-acetic acid (IAA) contents indicate the involvement of auxin pathway in miR319-mediated plant height regulation. Finally, we identified two TaPCF8 haplotypes in global wheat collections. TaPCF8-5A-Hap2, as per association and evolution examinations, was subjected to strong substantial selection throughout wheat breeding. This haplotype, associated with shorter plant height, aligns with global breeding requirements. Consequently, in high-yield wheat breeding, we proposed a potential molecular marker for marker-assisted selection (MAS). Our findings offer fresh perspectives into the molecular mechanisms that underlie the miR319-TaPCF8 module's regulation of plant height by orchestrating auxin signaling and biosynthesis in wheat.

miR319-TaPCF8 与 TaSPL14 相互配合,协调辅助素信号转导和生物合成,以调节普通小麦的植株高度。
小麦茎秆由四到六个节间组成,在决定株高和抗倒伏性方面起着关键作用,是影响田间表现和地区适应性的重要因素。本研究揭示了 miR319 对普通小麦株高的调控功能。通过短串联靶标模拟物(STM)抑制tae-miR319会导致株高增加,而过表达(OE)tae-miR319则会产生相反的效果。过表达抗 miR319 的靶基因 TaPCF8(rTaPCF8)会增加植株高度。TaPCF8 是下游基因 TaIAAs 的转录抑制因子,与 TaSPL14 有物理相互作用。吲哚-3-乙酸(IAA)含量的显着差异表明,miR319 介导的植株高度调控涉及到了叶绿素途径。最后,我们在全球小麦品种中发现了两种 TaPCF8 单倍型。根据关联和进化检验,TaPCF8-5A-Hap2 在整个小麦育种过程中受到了强烈的实质性选择。该单倍型与较短的株高有关,符合全球育种要求。因此,在高产小麦育种中,我们为标记辅助选择(MAS)提出了一个潜在的分子标记。我们的发现为研究 miR319-TaPCF8 模块通过协调小麦中的辅助素信号转导和生物合成调控植株高度的分子机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Plant Biology
Journal of Integrative Plant Biology 生物-生化与分子生物学
CiteScore
18.00
自引率
5.30%
发文量
220
审稿时长
3 months
期刊介绍: Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信