Degradation and detoxification of 6PPD-quinone in water by ultraviolet-activated peroxymonosulfate: Mechanisms, byproducts, and impact on sediment microbial community
Wenyan Yu , Shaoyu Tang , Jonathan W.C. Wong , Zhujun Luo , Zongrui Li , Phong K. Thai , Minghan Zhu , Hua Yin , Junfeng Niu
{"title":"Degradation and detoxification of 6PPD-quinone in water by ultraviolet-activated peroxymonosulfate: Mechanisms, byproducts, and impact on sediment microbial community","authors":"Wenyan Yu , Shaoyu Tang , Jonathan W.C. Wong , Zhujun Luo , Zongrui Li , Phong K. Thai , Minghan Zhu , Hua Yin , Junfeng Niu","doi":"10.1016/j.watres.2024.122210","DOIUrl":null,"url":null,"abstract":"<div><p>N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone (6PPD-Q) has been identified to induce acute toxicity to multifarious aquatic organisms at exceptionally low concentrations. The ubiquity and harmful effects of 6PPD-Q emphasize the critical need for its degradation from water ecosystems. Herein, we explored the transformation of 6PPD-Q by an ultraviolet-activated peroxymonosulfate (UV/PMS) system, focusing on mechanism, products and toxicity variation. Results showed that complete degradation of 6PPD-Q was achieved when the initial ratio of PMS and 6PPD-Q was 60:1. The quenching experiments and EPR tests indicated that SO<sub>4</sub><sup>•−</sup> and •OH radicals were primarily responsible for 6PPD-Q removal. Twenty-one degradation products were determined through high-resolution orbitrap mass spectrometry, and it was postulated that hydroxylation, oxidative cleavage, quinone decomposition, ring oxidation, as well as rearrangement and deamination were the major transformation pathways of 6PPD-Q. Toxicity prediction revealed that all identified products exhibited lower acute and chronic toxicities to fish, daphnid and green algae compared to 6PPD-Q. Exposure experiments also uncovered that 6PPD-Q considerably reduced the community diversity and altered the community assembly and functional traits of the sediment microbiome. However, we discovered that the toxicity of 6PPD-Q degradation solutions was effectively decreased, suggesting the superior detoxifying capability of the UV/PMS system for 6PPD-Q. These findings highlight the underlying detrimental impacts of 6PPD-Q on aquatic ecosystems and enrich our understanding of the photochemical oxidation behavior of 6PPD-Q.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"263 ","pages":"Article 122210"},"PeriodicalIF":11.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424011096","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine quinone (6PPD-Q) has been identified to induce acute toxicity to multifarious aquatic organisms at exceptionally low concentrations. The ubiquity and harmful effects of 6PPD-Q emphasize the critical need for its degradation from water ecosystems. Herein, we explored the transformation of 6PPD-Q by an ultraviolet-activated peroxymonosulfate (UV/PMS) system, focusing on mechanism, products and toxicity variation. Results showed that complete degradation of 6PPD-Q was achieved when the initial ratio of PMS and 6PPD-Q was 60:1. The quenching experiments and EPR tests indicated that SO4•− and •OH radicals were primarily responsible for 6PPD-Q removal. Twenty-one degradation products were determined through high-resolution orbitrap mass spectrometry, and it was postulated that hydroxylation, oxidative cleavage, quinone decomposition, ring oxidation, as well as rearrangement and deamination were the major transformation pathways of 6PPD-Q. Toxicity prediction revealed that all identified products exhibited lower acute and chronic toxicities to fish, daphnid and green algae compared to 6PPD-Q. Exposure experiments also uncovered that 6PPD-Q considerably reduced the community diversity and altered the community assembly and functional traits of the sediment microbiome. However, we discovered that the toxicity of 6PPD-Q degradation solutions was effectively decreased, suggesting the superior detoxifying capability of the UV/PMS system for 6PPD-Q. These findings highlight the underlying detrimental impacts of 6PPD-Q on aquatic ecosystems and enrich our understanding of the photochemical oxidation behavior of 6PPD-Q.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.