Ana Alonso Rodríguez, Jessika Camaño, Eduardo De Los Santos, Francesca Rapetti
{"title":"Weights for moments’ geometrical localization: a canonical isomorphism","authors":"Ana Alonso Rodríguez, Jessika Camaño, Eduardo De Los Santos, Francesca Rapetti","doi":"10.1007/s10444-024-10183-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with high order Whitney forms. We define a canonical isomorphism between two sets of degrees of freedom. This allows to geometrically localize the classical degrees of freedom, the moments, over the elements of a simplicial mesh. With such a localization, it is thus possible to associate, even with moments, a graph structure relating a field with its potential.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10183-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10183-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with high order Whitney forms. We define a canonical isomorphism between two sets of degrees of freedom. This allows to geometrically localize the classical degrees of freedom, the moments, over the elements of a simplicial mesh. With such a localization, it is thus possible to associate, even with moments, a graph structure relating a field with its potential.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.