Muhammad Abdelghaffar;Thomas Valerrian Pasca Santhappan;Yeliz Tokgoz;Kiran Mukkavilli;and Tingfang Ji
{"title":"Subband Full-Duplex Large-Scale Deployed Network Designs and Tradeoffs","authors":"Muhammad Abdelghaffar;Thomas Valerrian Pasca Santhappan;Yeliz Tokgoz;Kiran Mukkavilli;and Tingfang Ji","doi":"10.1109/JPROC.2024.3419158","DOIUrl":null,"url":null,"abstract":"Time-division duplex (TDD) and frequency-division duplex (FDD) are mainly used in commercial new radio (NR) deployments, where the time- or frequency-domain resources are split between downlink (DL) and uplink (UL). Full duplex (FD) will enable 5G-advanced and 6G systems to go beyond TDD and FDD operation into a new duplexing mode that leverages the benefits of both TDD/FDD deployments. It achieves higher throughput and lower latency while enabling flexible UL/DL scheduling. However, there are several challenges that need to be overcome to enable FD operation in large-scale system deployment, including intranode and internode [user equipment (UE) and next-generation node B (5G base station)] interference along with intercarrier interference. In this article, we present solutions to mitigate self-interference (SI) and cross-link interference (CLI) in 5G-advanced/6G systems, provide system-level evaluations, and discuss the outcome of Third Generation Partnership Project (3GPP) study item on duplexing evolution. We introduce the concept of subband FD (SBFD) as an effective solution for a macro network to achieve the key features of FD, such as latency reduction and UL link budget improvement. Finally, we present the field test results for the performance of world-first SBFD prototype of high transmit power massive-multi-input-multioutput (MIMO) macro network.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 5","pages":"487-510"},"PeriodicalIF":23.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10622082/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Time-division duplex (TDD) and frequency-division duplex (FDD) are mainly used in commercial new radio (NR) deployments, where the time- or frequency-domain resources are split between downlink (DL) and uplink (UL). Full duplex (FD) will enable 5G-advanced and 6G systems to go beyond TDD and FDD operation into a new duplexing mode that leverages the benefits of both TDD/FDD deployments. It achieves higher throughput and lower latency while enabling flexible UL/DL scheduling. However, there are several challenges that need to be overcome to enable FD operation in large-scale system deployment, including intranode and internode [user equipment (UE) and next-generation node B (5G base station)] interference along with intercarrier interference. In this article, we present solutions to mitigate self-interference (SI) and cross-link interference (CLI) in 5G-advanced/6G systems, provide system-level evaluations, and discuss the outcome of Third Generation Partnership Project (3GPP) study item on duplexing evolution. We introduce the concept of subband FD (SBFD) as an effective solution for a macro network to achieve the key features of FD, such as latency reduction and UL link budget improvement. Finally, we present the field test results for the performance of world-first SBFD prototype of high transmit power massive-multi-input-multioutput (MIMO) macro network.
期刊介绍:
Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.