Predicting telomerase reverse transcriptase promoter mutation in glioma: A systematic review and diagnostic meta-analysis on machine learning algorithms.

IF 1.3 Q4 NEUROIMAGING
Mohammad Amin Habibi, Ali Dinpazhouh, Aliakbar Aliasgary, Mohammad Sina Mirjani, Mehdi Mousavinasab, Mohammad Reza Ahmadi, Poriya Minaee, SeyedMohammad Eazi, Milad Shafizadeh, Muhammet Enes Gurses, Victor M Lu, Chandler N Berke, Michael E Ivan, Ricardo J Komotar, Ashish H Shah
{"title":"Predicting telomerase reverse transcriptase promoter mutation in glioma: A systematic review and diagnostic meta-analysis on machine learning algorithms.","authors":"Mohammad Amin Habibi, Ali Dinpazhouh, Aliakbar Aliasgary, Mohammad Sina Mirjani, Mehdi Mousavinasab, Mohammad Reza Ahmadi, Poriya Minaee, SeyedMohammad Eazi, Milad Shafizadeh, Muhammet Enes Gurses, Victor M Lu, Chandler N Berke, Michael E Ivan, Ricardo J Komotar, Ashish H Shah","doi":"10.1177/19714009241269526","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioma is one of the most common primary brain tumors. The presence of the telomerase reverse transcriptase promoter (pTERT) mutation is associated with a better prognosis. This study aims to investigate the TERT mutation in patients with glioma using machine learning (ML) algorithms on radiographic imaging.</p><p><strong>Method: </strong>This study was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The electronic databases of PubMed, Embase, Scopus, and Web of Science were searched from inception to August 1, 2023. The statistical analysis was performed using the MIDAS package of STATA v.17.</p><p><strong>Results: </strong>A total of 22 studies involving 5371 patients were included for data extraction, with data synthesis based on 11 reports. The analysis revealed a pooled sensitivity of 0.86 (95% CI: 0.78-0.92) and a specificity of 0.80 (95% CI 0.72-0.86). The positive and negative likelihood ratios were 4.23 (95% CI: 2.99-5.99) and 0.18 (95% CI: 0.11-0.29), respectively. The pooled diagnostic score was 3.18 (95% CI: 2.45-3.91), with a diagnostic odds ratio 24.08 (95% CI: 11.63-49.87). The Summary Receiver Operating Characteristic (SROC) curve had an area under the curve (AUC) of 0.89 (95% CI: 0.86-0.91).</p><p><strong>Conclusion: </strong>The study suggests that ML can predict TERT mutation status in glioma patients. ML models showed high sensitivity (0.86) and moderate specificity (0.80), aiding disease prognosis and treatment planning. However, further development and improvement of ML models are necessary for better performance metrics and increased reliability in clinical practice.</p>","PeriodicalId":47358,"journal":{"name":"Neuroradiology Journal","volume":" ","pages":"19714009241269526"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11571522/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19714009241269526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioma is one of the most common primary brain tumors. The presence of the telomerase reverse transcriptase promoter (pTERT) mutation is associated with a better prognosis. This study aims to investigate the TERT mutation in patients with glioma using machine learning (ML) algorithms on radiographic imaging.

Method: This study was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The electronic databases of PubMed, Embase, Scopus, and Web of Science were searched from inception to August 1, 2023. The statistical analysis was performed using the MIDAS package of STATA v.17.

Results: A total of 22 studies involving 5371 patients were included for data extraction, with data synthesis based on 11 reports. The analysis revealed a pooled sensitivity of 0.86 (95% CI: 0.78-0.92) and a specificity of 0.80 (95% CI 0.72-0.86). The positive and negative likelihood ratios were 4.23 (95% CI: 2.99-5.99) and 0.18 (95% CI: 0.11-0.29), respectively. The pooled diagnostic score was 3.18 (95% CI: 2.45-3.91), with a diagnostic odds ratio 24.08 (95% CI: 11.63-49.87). The Summary Receiver Operating Characteristic (SROC) curve had an area under the curve (AUC) of 0.89 (95% CI: 0.86-0.91).

Conclusion: The study suggests that ML can predict TERT mutation status in glioma patients. ML models showed high sensitivity (0.86) and moderate specificity (0.80), aiding disease prognosis and treatment planning. However, further development and improvement of ML models are necessary for better performance metrics and increased reliability in clinical practice.

预测胶质瘤端粒酶逆转录酶启动子突变:关于机器学习算法的系统综述和诊断荟萃分析。
背景:胶质瘤是最常见的原发性脑肿瘤之一:胶质瘤是最常见的原发性脑肿瘤之一。端粒酶逆转录酶启动子(pTERT)突变与较好的预后有关。本研究旨在利用机器学习(ML)算法对神经胶质瘤患者的放射成像进行TERT突变研究:本研究根据《系统综述和元分析首选报告项目》(Preferred Reporting Items for Systematic Reviews and Meta-Analyses,PRISMA)指南进行准备。检索了从开始到 2023 年 8 月 1 日的 PubMed、Embase、Scopus 和 Web of Science 等电子数据库。统计分析使用 STATA v.17 的 MIDAS 软件包进行:共纳入了 22 项研究,涉及 5371 名患者的数据提取,并根据 11 份报告进行了数据综合。分析结果显示,汇总灵敏度为 0.86(95% CI:0.78-0.92),特异度为 0.80(95% CI:0.72-0.86)。阳性和阴性似然比分别为 4.23(95% CI:2.99-5.99)和 0.18(95% CI:0.11-0.29)。汇总诊断得分为 3.18(95% CI:2.45-3.91),诊断几率比为 24.08(95% CI:11.63-49.87)。总结接收者操作特征曲线(SROC)的曲线下面积(AUC)为 0.89(95% CI:0.86-0.91):研究表明,ML 可以预测胶质瘤患者的 TERT 突变状态。ML模型显示出较高的灵敏度(0.86)和中等程度的特异性(0.80),有助于疾病预后和治疗计划的制定。然而,为了在临床实践中获得更好的性能指标和更高的可靠性,有必要进一步开发和改进 ML 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroradiology Journal
Neuroradiology Journal NEUROIMAGING-
CiteScore
2.50
自引率
0.00%
发文量
101
期刊介绍: NRJ - The Neuroradiology Journal (formerly Rivista di Neuroradiologia) is the official journal of the Italian Association of Neuroradiology and of the several Scientific Societies from all over the world. Founded in 1988 as Rivista di Neuroradiologia, of June 2006 evolved in NRJ - The Neuroradiology Journal. It is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信