Claudio Scuoppo, Bowen Cai, Kenneth Ofori, Hanna Scholze, Rahul Kumar, Angelo D'Alessandro, Katia Basso, Laura Pasqualucci, Riccardo Dalla-Favera
{"title":"Repurposing NAMPT Inhibitors for Germinal Center B Cell-Like Diffuse Large B-Cell Lymphoma.","authors":"Claudio Scuoppo, Bowen Cai, Kenneth Ofori, Hanna Scholze, Rahul Kumar, Angelo D'Alessandro, Katia Basso, Laura Pasqualucci, Riccardo Dalla-Favera","doi":"10.1158/2643-3230.BCD-24-0020","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse large B-cell lymphoma (DLBCL) includes the activated B cell-like (ABC) and germinal center B cell-like (GCB) subtypes, which differ in cell of origin, genetics, and clinical response. By screening the subtype-specific activity of 211 drugs approved or in active clinical development for other diseases, we identified inhibitors of nicotinamide phosphoribosyl transferase (NAMPTi) as active in a subset of GCB-DLBCL in vitro and in vivo. We validated three chemically distinct NAMPTis for their on-target activity based on biochemical and genetic rescue approaches and found the ratio between NAMPT and PARP1 RNA levels was predictive of NAMPTi sensitivity across DLBCL subtypes. Notably, the NAMPT:PARP1 transcript ratio predicts higher antitumor activity in BCL2-translocated GCB-DLBCL. Accordingly, pharmacologic and genetic inhibition of BCL2 was potently synergistic with NAMPT blockade. These data support the inhibition of NAMPT as a therapeutically relevant strategy for BCL2-translocated DLBCLs. Significance: Targeted therapies have emerged for the ABC subtype of DLBCL, but not for the GCB subtype, despite the evidence of a significant subset of high-risk cases. We identify a drug that specifically targets a subset of GCB-DLBCL and provide preclinical evidence for BCL2 translocations as biomarkers for their identification.</p>","PeriodicalId":29944,"journal":{"name":"Blood Cancer Discovery","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Cancer Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/2643-3230.BCD-24-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diffuse large B-cell lymphoma (DLBCL) includes the activated B cell-like (ABC) and germinal center B cell-like (GCB) subtypes, which differ in cell of origin, genetics, and clinical response. By screening the subtype-specific activity of 211 drugs approved or in active clinical development for other diseases, we identified inhibitors of nicotinamide phosphoribosyl transferase (NAMPTi) as active in a subset of GCB-DLBCL in vitro and in vivo. We validated three chemically distinct NAMPTis for their on-target activity based on biochemical and genetic rescue approaches and found the ratio between NAMPT and PARP1 RNA levels was predictive of NAMPTi sensitivity across DLBCL subtypes. Notably, the NAMPT:PARP1 transcript ratio predicts higher antitumor activity in BCL2-translocated GCB-DLBCL. Accordingly, pharmacologic and genetic inhibition of BCL2 was potently synergistic with NAMPT blockade. These data support the inhibition of NAMPT as a therapeutically relevant strategy for BCL2-translocated DLBCLs. Significance: Targeted therapies have emerged for the ABC subtype of DLBCL, but not for the GCB subtype, despite the evidence of a significant subset of high-risk cases. We identify a drug that specifically targets a subset of GCB-DLBCL and provide preclinical evidence for BCL2 translocations as biomarkers for their identification.
期刊介绍:
The journal Blood Cancer Discovery publishes high-quality Research Articles and Briefs that focus on major advances in basic, translational, and clinical research of leukemia, lymphoma, myeloma, and associated diseases. The topics covered include molecular and cellular features of pathogenesis, therapy response and relapse, transcriptional circuits, stem cells, differentiation, microenvironment, metabolism, immunity, mutagenesis, and clonal evolution. These subjects are investigated in both animal disease models and high-dimensional clinical data landscapes.
The journal also welcomes submissions on new pharmacological, biological, and living cell therapies, as well as new diagnostic tools. They are interested in prognostic, diagnostic, and pharmacodynamic biomarkers, and computational and machine learning approaches to personalized medicine. The scope of submissions ranges from preclinical proof of concept to clinical trials and real-world evidence.
Blood Cancer Discovery serves as a forum for diverse ideas that shape future research directions in hematooncology. In addition to Research Articles and Briefs, the journal also publishes Reviews, Perspectives, and Commentaries on topics of broad interest in the field.