[Diagnosis of benign laryngeal tumors using neural network].

Q3 Medicine
A I Kryukov, P A Sudarev, S G Romanenko, D I Kurbanova, E V Lesogorova, E N Krasilnikova, O G Pavlikhin, A A Ivanova, A P Osadchiy, N G Shevyrina
{"title":"[Diagnosis of benign laryngeal tumors using neural network].","authors":"A I Kryukov, P A Sudarev, S G Romanenko, D I Kurbanova, E V Lesogorova, E N Krasilnikova, O G Pavlikhin, A A Ivanova, A P Osadchiy, N G Shevyrina","doi":"10.17116/otorino20248903124","DOIUrl":null,"url":null,"abstract":"<p><p>The article describes our experience in developing and training an artificial neural network based on artificial intelligence algorithms for recognizing the characteristic features of benign laryngeal tumors and variants of the norm of the larynx based on the analysis of laryngoscopy pictures obtained during the examination of patients. During the preparation of data for training the neural network, a dataset was collected, labeled and loaded, consisting of 1471 images of the larynx in digital formats (jpg, bmp). Next, the neural network was trained and tested in order to recognize images of the norm and neoplasms of the larynx. The developed and trained artificial neural network demonstrated an accuracy of 86% in recognizing of benign laryngeal tumors and variants of the norm of the larynx. The proposed technology can be further used in practical healthcare to control and improve the quality of diagnosis of laryngeal pathologies.</p>","PeriodicalId":23575,"journal":{"name":"Vestnik otorinolaringologii","volume":"89 3","pages":"24-28"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik otorinolaringologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17116/otorino20248903124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The article describes our experience in developing and training an artificial neural network based on artificial intelligence algorithms for recognizing the characteristic features of benign laryngeal tumors and variants of the norm of the larynx based on the analysis of laryngoscopy pictures obtained during the examination of patients. During the preparation of data for training the neural network, a dataset was collected, labeled and loaded, consisting of 1471 images of the larynx in digital formats (jpg, bmp). Next, the neural network was trained and tested in order to recognize images of the norm and neoplasms of the larynx. The developed and trained artificial neural network demonstrated an accuracy of 86% in recognizing of benign laryngeal tumors and variants of the norm of the larynx. The proposed technology can be further used in practical healthcare to control and improve the quality of diagnosis of laryngeal pathologies.

[利用神经网络诊断喉良性肿瘤]。
文章介绍了我们在开发和训练基于人工智能算法的人工神经网络方面的经验,该网络可根据对患者检查时获得的喉镜图片的分析,识别喉部良性肿瘤的特征和喉部正常情况的变异。在为训练神经网络准备数据期间,收集、标记和加载了一个数据集,其中包括 1471 张数字格式(jpg、bmp)的喉部图像。接下来,对神经网络进行了训练和测试,以识别喉部正常和肿瘤的图像。经过开发和训练的人工神经网络在识别喉部良性肿瘤和喉部正常变体方面的准确率达到了 86%。所提出的技术可进一步用于实际医疗保健中,以控制和提高喉部病变的诊断质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vestnik otorinolaringologii
Vestnik otorinolaringologii Medicine-Otorhinolaryngology
CiteScore
0.80
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信