{"title":"Integrated Distributed Sensing and Quantum Communication Networks.","authors":"Yuehan Xu, Tao Wang, Peng Huang, Guihua Zeng","doi":"10.34133/research.0416","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of sensing and communication can achieve ubiquitous sensing while enabling ubiquitous communication. Within the gradually improving global communication, the integrated sensing and communication system based on optical fibers can accomplish various functionalities, such as urban structure imaging, seismic wave detection, and pipeline safety monitoring. With the development of quantum communication, quantum networks based on optical fiber are gradually being established. In this paper, we propose an integrated sensing and quantum network (ISAQN) scheme, which can achieve secure key distribution among multiple nodes and distributed sensing under the standard quantum limit. The continuous variables quantum key distribution protocol and the round-trip multiband structure are adopted to achieve the multinode secure key distribution. Meanwhile, the spectrum phase monitoring protocol is proposed to realize distributed sensing. It determines which node is vibrating by monitoring the frequency spectrum and restores the vibration waveform by monitoring the phase change. The scheme is experimentally demonstrated by simulating the vibration in a star structure network. Experimental results indicate that this multiuser quantum network can achieve a secret key rate of approximately 0.7 Mbits/s for each user under 10-km standard fiber transmission, and its network capacity is 8. In terms of distributed sensing, it can achieve a vibration response bandwidth ranging from 1 Hz to 2 kHz, a strain resolution of 0.50 <math><mi>n</mi> <mi>ε</mi> <mo>/</mo> <msqrt><mi>Hz</mi></msqrt> </math> , and a spatial resolution of 0.20 m under shot-noise-limited detection. The proposed ISAQN scheme enables simultaneous quantum communication and distributed sensing in a multipoint network, laying a foundation for future large-scale quantum networks and high-precision sensing networks.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0416"},"PeriodicalIF":11.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0416","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of sensing and communication can achieve ubiquitous sensing while enabling ubiquitous communication. Within the gradually improving global communication, the integrated sensing and communication system based on optical fibers can accomplish various functionalities, such as urban structure imaging, seismic wave detection, and pipeline safety monitoring. With the development of quantum communication, quantum networks based on optical fiber are gradually being established. In this paper, we propose an integrated sensing and quantum network (ISAQN) scheme, which can achieve secure key distribution among multiple nodes and distributed sensing under the standard quantum limit. The continuous variables quantum key distribution protocol and the round-trip multiband structure are adopted to achieve the multinode secure key distribution. Meanwhile, the spectrum phase monitoring protocol is proposed to realize distributed sensing. It determines which node is vibrating by monitoring the frequency spectrum and restores the vibration waveform by monitoring the phase change. The scheme is experimentally demonstrated by simulating the vibration in a star structure network. Experimental results indicate that this multiuser quantum network can achieve a secret key rate of approximately 0.7 Mbits/s for each user under 10-km standard fiber transmission, and its network capacity is 8. In terms of distributed sensing, it can achieve a vibration response bandwidth ranging from 1 Hz to 2 kHz, a strain resolution of 0.50 , and a spatial resolution of 0.20 m under shot-noise-limited detection. The proposed ISAQN scheme enables simultaneous quantum communication and distributed sensing in a multipoint network, laying a foundation for future large-scale quantum networks and high-precision sensing networks.
期刊介绍:
Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe.
Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.