DepoScope: Accurate phage depolymerase annotation and domain delineation using large language models.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2024-08-05 eCollection Date: 2024-08-01 DOI:10.1371/journal.pcbi.1011831
Robby Concha-Eloko, Michiel Stock, Bernard De Baets, Yves Briers, Rafael Sanjuán, Pilar Domingo-Calap, Dimitri Boeckaerts
{"title":"DepoScope: Accurate phage depolymerase annotation and domain delineation using large language models.","authors":"Robby Concha-Eloko, Michiel Stock, Bernard De Baets, Yves Briers, Rafael Sanjuán, Pilar Domingo-Calap, Dimitri Boeckaerts","doi":"10.1371/journal.pcbi.1011831","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriophages (phages) are viruses that infect bacteria. Many of them produce specific enzymes called depolymerases to break down external polysaccharide structures. Accurate annotation and domain identification of these depolymerases are challenging due to their inherent sequence diversity. Hence, we present DepoScope, a machine learning tool that combines a fine-tuned ESM-2 model with a convolutional neural network to identify depolymerase sequences and their enzymatic domains precisely. To accomplish this, we curated a dataset from the INPHARED phage genome database, created a polysaccharide-degrading domain database, and applied sequential filters to construct a high-quality dataset, which is subsequently used to train DepoScope. Our work is the first approach that combines sequence-level predictions with amino-acid-level predictions for accurate depolymerase detection and functional domain identification. In that way, we believe that DepoScope can greatly enhance our understanding of phage-host interactions at the level of depolymerases.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11326577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011831","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteriophages (phages) are viruses that infect bacteria. Many of them produce specific enzymes called depolymerases to break down external polysaccharide structures. Accurate annotation and domain identification of these depolymerases are challenging due to their inherent sequence diversity. Hence, we present DepoScope, a machine learning tool that combines a fine-tuned ESM-2 model with a convolutional neural network to identify depolymerase sequences and their enzymatic domains precisely. To accomplish this, we curated a dataset from the INPHARED phage genome database, created a polysaccharide-degrading domain database, and applied sequential filters to construct a high-quality dataset, which is subsequently used to train DepoScope. Our work is the first approach that combines sequence-level predictions with amino-acid-level predictions for accurate depolymerase detection and functional domain identification. In that way, we believe that DepoScope can greatly enhance our understanding of phage-host interactions at the level of depolymerases.

DepoScope:使用大型语言模型进行准确的噬菌体解聚酶注释和领域划分。
噬菌体(噬菌体)是感染细菌的病毒。其中许多噬菌体能产生被称为解聚酶的特异性酶来分解外部多糖结构。由于噬菌体固有的序列多样性,对这些解聚酶进行精确注释和域识别具有挑战性。因此,我们提出了一种机器学习工具 DepoScope,它将微调的 ESM-2 模型与卷积神经网络相结合,以精确识别解聚酶序列及其酶域。为此,我们从 INPHARED 噬菌体基因组数据库中整理了一个数据集,创建了一个多糖降解结构域数据库,并应用序列过滤器构建了一个高质量的数据集,随后用于训练 DepoScope。我们的工作是第一种将序列级预测与氨基酸级预测相结合的方法,用于准确的解聚酶检测和功能域鉴定。通过这种方法,我们相信DepoScope能大大提高我们对噬菌体-宿主在解聚酶水平上相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信