Development and characterization of primary cell culture from the spinal cord of Asian seabass, Lates calcarifer.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Sivaraj Mithra, Seepoo Abdul Majeed, Gani Taju, Sugumar Vimal, Azeez Sait Sahul Hameed
{"title":"Development and characterization of primary cell culture from the spinal cord of Asian seabass, Lates calcarifer.","authors":"Sivaraj Mithra, Seepoo Abdul Majeed, Gani Taju, Sugumar Vimal, Azeez Sait Sahul Hameed","doi":"10.1007/s11626-024-00938-8","DOIUrl":null,"url":null,"abstract":"<p><p>Asian seabass, Lates calcarifer, is one of the most important fish species in aquaculture. An attempt was made to develop a primary cell culture from the spinal cord of Lates calcarifer by the enzymatic and mechanical dissociation method. The primary cell culture was sub-cultured for 20 times in Leibovitz's L-15 medium with 20% fetal bovine serum (FBS) and 0.5 nM of human neurotrophin-3 at 28°C. The primary cell culture was cryopreserved at different passage levels and recovery of cells after long-term storage was estimated about 75-85%. The authenticity of origin of primary cell culture from L. calcarifer was confirmed by polymerase chain reaction assay using species-specific mitochondrial 12S rRNA primer. The primary cell culture was designated as seabass spinal cord cells (SBSC). The cells morphologically resembled the neurons due to their neural-like prolongations and star-like structure. Immunophenotypic analysis of the SBSC revealed that they are of neuronal origin. The SBSC were found to be highly susceptible to striped jack nervous necrosis virus (SJNNV) and infection in the cells was confirmed by RT-PCR. In conclusion, this is the first innovative euryhaline fish neuronal primary cell culture of L. calcarifer now available for neurophysiological and neurotoxicological studies.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":"825-831"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00938-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Asian seabass, Lates calcarifer, is one of the most important fish species in aquaculture. An attempt was made to develop a primary cell culture from the spinal cord of Lates calcarifer by the enzymatic and mechanical dissociation method. The primary cell culture was sub-cultured for 20 times in Leibovitz's L-15 medium with 20% fetal bovine serum (FBS) and 0.5 nM of human neurotrophin-3 at 28°C. The primary cell culture was cryopreserved at different passage levels and recovery of cells after long-term storage was estimated about 75-85%. The authenticity of origin of primary cell culture from L. calcarifer was confirmed by polymerase chain reaction assay using species-specific mitochondrial 12S rRNA primer. The primary cell culture was designated as seabass spinal cord cells (SBSC). The cells morphologically resembled the neurons due to their neural-like prolongations and star-like structure. Immunophenotypic analysis of the SBSC revealed that they are of neuronal origin. The SBSC were found to be highly susceptible to striped jack nervous necrosis virus (SJNNV) and infection in the cells was confirmed by RT-PCR. In conclusion, this is the first innovative euryhaline fish neuronal primary cell culture of L. calcarifer now available for neurophysiological and neurotoxicological studies.

Abstract Image

亚洲鲈鱼脊髓原代细胞培养的发展和特征。
亚洲鲈鱼(Lates calcarifer)是水产养殖业中最重要的鱼种之一。研究人员尝试用酶解和机械解离法从鲈鱼脊髓中培养原代细胞。原代细胞培养物在含有 20% 胎牛血清(FBS)和 0.5 nM 人神经营养素-3 的 Leibovitz L-15 培养基中于 28°C 下亚培养 20 次。原代细胞培养物在不同通道水平进行了低温保存,长期保存后的细胞回收率估计约为 75-85%。通过使用物种特异性线粒体 12S rRNA 引物进行聚合酶链反应检测,确认了来自 L. calcarifer 的原代细胞培养物的真实性。原代细胞培养物被命名为鲈鱼脊髓细胞(SBSC)。这些细胞在形态上类似神经元,具有神经样延长和星状结构。对 SBSC 的免疫表型分析表明,它们起源于神经元。研究发现,SBSC 对条纹杰克神经坏死病毒(SJNNV)高度敏感,细胞中的感染通过 RT-PCR 得到证实。总之,这是第一个创新性的极叉鱼神经元原代细胞培养物,可用于神经生理学和神经毒理学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信