{"title":"Freezing does not influence the microarchitectural parameters of the microstructure of the freshly harvested femoral head bone.","authors":"Virginie Taillebot, Théo Krieger, Aurélien Maurel-Pantel, Youngji Kim, Matthieu Ollivier, Martine Pithioux","doi":"10.1007/s10561-024-10147-y","DOIUrl":null,"url":null,"abstract":"<p><p>The femoral head is one of the most commonly used bones for allografts and biomechanical studies. However, there are few reports on the trabecular bone microarchitectural parameters of freshly harvested trabecular bones. To our knowledge, this is the first study to characterize the microstructure of femoral heads tested immediately after surgery and compare it with the microstructure obtained with conventional freezing. This study aims to investigate whether freezing at -80 °C for 6 weeks affects the trabecular microstructure of freshly harvested bone tissue. This study was divided into two groups: one with freshly harvested human femoral heads and the other with the same human femoral heads frozen at -80 °C for 6 weeks. Each femoral head was scanned using an X-ray microcomputed tomography scanner (µCT) to obtain the microarchitectural parameters, including the bone volume fraction (BV/TV), the mean trabecular thickness (Tb.th), the trabecular separation (Tb.sp), the degree of anisotropy (DA), and the connectivity density (Conn.D). There was no statistically significant difference between the fresh and the frozen groups for any of the parameters measured. This study shows that freezing at -80 °C for 6 weeks does not alter bone microstructure compared with freshly harvested femoral heads tested immediately after surgery.</p>","PeriodicalId":9723,"journal":{"name":"Cell and Tissue Banking","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Banking","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10561-024-10147-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The femoral head is one of the most commonly used bones for allografts and biomechanical studies. However, there are few reports on the trabecular bone microarchitectural parameters of freshly harvested trabecular bones. To our knowledge, this is the first study to characterize the microstructure of femoral heads tested immediately after surgery and compare it with the microstructure obtained with conventional freezing. This study aims to investigate whether freezing at -80 °C for 6 weeks affects the trabecular microstructure of freshly harvested bone tissue. This study was divided into two groups: one with freshly harvested human femoral heads and the other with the same human femoral heads frozen at -80 °C for 6 weeks. Each femoral head was scanned using an X-ray microcomputed tomography scanner (µCT) to obtain the microarchitectural parameters, including the bone volume fraction (BV/TV), the mean trabecular thickness (Tb.th), the trabecular separation (Tb.sp), the degree of anisotropy (DA), and the connectivity density (Conn.D). There was no statistically significant difference between the fresh and the frozen groups for any of the parameters measured. This study shows that freezing at -80 °C for 6 weeks does not alter bone microstructure compared with freshly harvested femoral heads tested immediately after surgery.
期刊介绍:
Cell and Tissue Banking provides a forum for disseminating information to scientists and clinicians involved in the banking and transplantation of cells and tissues. Cell and Tissue Banking is an international, peer-reviewed journal that publishes original papers in the following areas:
basic research concerning general aspects of tissue banking such as quality assurance and control of banked cells/tissues, effects of preservation and sterilisation methods on cells/tissues, biotechnology, etc.; clinical applications of banked cells/tissues; standards of practice in procurement, processing, storage and distribution of cells/tissues; ethical issues; medico-legal issues.