{"title":"Analysis of histomorphology and SERNINA5 gene expression in different regions of epididymis of cattleyak","authors":"Haiyan Li, Cheng Pan, Yifei Wang, Jingjing Li, Zhenzhen Zhang, Khuram Shahzad, Shehr Bano Mustafa, Ye Wang, Wangsheng Zhao","doi":"10.1007/s10735-024-10234-0","DOIUrl":null,"url":null,"abstract":"<div><p>The molecular mechanism of sterility in cattleyak is still unresolved. The related factors of infertility in cattleyak were studied by tissue section, <i>SERPINA5</i> gene cloning and bioinformatics technology. Tissue sections of the epididymis showed poorly structured and disorganized epithelial cells in the corpus of the epididymis compared to the caput of the epididymis, while in the cauda part of the epididymis, the extra basal smooth muscle was thinner, the surface of the epithelial lumen was discontinuous and the epithelium was markedly degenerated. The results of gene cloning showed that the coding sequence (CDS) region of the <i>SERPINA5</i> gene in cattleyak was 1215 bp in length, encoding a total of 404 amino acids, of which the isoleucine content was the highest, accounting for a total of 49 amino acids (12.1%). The results of real-time fluorescence quantitative PCR (qPCR) showed that the expression of the <i>SERPINA5</i> gene in the epididymis caput in cattleyak was significantly higher than that in the corpus and cauda (<i>P</i><i> < 0.05</i>), but there were no significant differences between the corpus and cauda. In the current study, histological and bioinformatics analysis, physicochemical properties, and the expression analysis of the <i>SERPINA5</i> gene in different regions of the epididymis in cattleyak were carried out to explore the biological complications of cattleyak infertility.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-024-10234-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The molecular mechanism of sterility in cattleyak is still unresolved. The related factors of infertility in cattleyak were studied by tissue section, SERPINA5 gene cloning and bioinformatics technology. Tissue sections of the epididymis showed poorly structured and disorganized epithelial cells in the corpus of the epididymis compared to the caput of the epididymis, while in the cauda part of the epididymis, the extra basal smooth muscle was thinner, the surface of the epithelial lumen was discontinuous and the epithelium was markedly degenerated. The results of gene cloning showed that the coding sequence (CDS) region of the SERPINA5 gene in cattleyak was 1215 bp in length, encoding a total of 404 amino acids, of which the isoleucine content was the highest, accounting for a total of 49 amino acids (12.1%). The results of real-time fluorescence quantitative PCR (qPCR) showed that the expression of the SERPINA5 gene in the epididymis caput in cattleyak was significantly higher than that in the corpus and cauda (P < 0.05), but there were no significant differences between the corpus and cauda. In the current study, histological and bioinformatics analysis, physicochemical properties, and the expression analysis of the SERPINA5 gene in different regions of the epididymis in cattleyak were carried out to explore the biological complications of cattleyak infertility.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.