Navigating the frontier of drug-like chemical space with cutting-edge generative AI models

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Antonio Lavecchia
{"title":"Navigating the frontier of drug-like chemical space with cutting-edge generative AI models","authors":"Antonio Lavecchia","doi":"10.1016/j.drudis.2024.104133","DOIUrl":null,"url":null,"abstract":"<div><p>Deep generative models (GMs) have transformed the exploration of drug-like chemical space (CS) by generating novel molecules through complex, nontransparent processes, bypassing direct structural similarity. This review examines five key architectures for CS exploration: recurrent neural networks (RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows (NF), and Transformers. It discusses molecular representation choices, training strategies for focused CS exploration, evaluation criteria for CS coverage, and related challenges. Future directions include refining models, exploring new notations, improving benchmarks, and enhancing interpretability to better understand biologically relevant molecular properties.</p></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"29 9","pages":"Article 104133"},"PeriodicalIF":6.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359644624002587/pdfft?md5=0ee815e5dbb9a06826d24ccadbf6fc05&pid=1-s2.0-S1359644624002587-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644624002587","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep generative models (GMs) have transformed the exploration of drug-like chemical space (CS) by generating novel molecules through complex, nontransparent processes, bypassing direct structural similarity. This review examines five key architectures for CS exploration: recurrent neural networks (RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows (NF), and Transformers. It discusses molecular representation choices, training strategies for focused CS exploration, evaluation criteria for CS coverage, and related challenges. Future directions include refining models, exploring new notations, improving benchmarks, and enhancing interpretability to better understand biologically relevant molecular properties.

用最先进的生成式人工智能模型探索类药物化学空间的前沿。
深度生成模型(GM)绕过直接的结构相似性,通过复杂、不透明的过程生成新分子,从而改变了类药物化学空间(CS)的探索。本综述探讨了探索 CS 的五种关键架构:递归神经网络 (RNN)、变异自动编码器 (VAE)、生成对抗网络 (GAN)、归一化流 (NF) 和变换器。报告讨论了分子表示的选择、集中探索 CS 的训练策略、CS 覆盖率的评估标准以及相关挑战。未来的发展方向包括完善模型、探索新的符号、改进基准和提高可解释性,以便更好地理解与生物相关的分子特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信