Rogerio Biaggioni Lopes, Marcos Faria, Charles Martins Oliveira
{"title":"Susceptibility of Dalbulus maidis to insect-pathogenic fungi: unveiling the protective role of brochosomes and self-cleaning behavior","authors":"Rogerio Biaggioni Lopes, Marcos Faria, Charles Martins Oliveira","doi":"10.1007/s10340-024-01823-9","DOIUrl":null,"url":null,"abstract":"<p>The corn leafhopper, <i>Dalbulus maidis</i> (Hemiptera, Cicadellidae), is an important pest of maize in Latin America, transmitting plant pathogens that impact grain production. Recently, mycopesticides have been considered as an alternative for the biological control of <i>D. maidis</i> populations, but there is controversy surrounding the efficacy of these products. We assessed the susceptibility of <i>D. maidis</i> to invertebrate-pathogenic fungi and, for the first time, investigated the protective role of the protein-lipid coat of brochosomes on the insect integument as a barrier against infections. Adult mortality was lower than 35% seven days after exposure to maize plants sprayed with water + surfactant-based conidia suspensions of 31 fungal strains from three different genera (<i>Beauveria</i>, <i>Cordyceps</i> and <i>Metarhizium</i>). Direct application of conidia suspensions on adults did not increase significantly the mortality rates when compared to adults exposed to contaminated surfaces. Conidia in water + surfactant readily adhered and germinated on detached forewings of <i>D. maidis</i> from which brochosomes were removed, but wings coated with this protein-lipid layer repelled droplets. Dry conidia easily adhered to brochosome-coated wings and their germination was not affected, although the methodical self-cleaning behavior of the adults effectively dislodged most conidia (either in suspensions or as a dry powder) from insect’s body after treatment. In conclusion, brochosomes and self-cleaning together efficiently prevent adhesion of conidia to <i>D. maidis</i> cuticle, serving as important barriers against fungal invasion and decreasing insect mortality. Our study highlights the importance of combining mycopesticides with effective adjuvants in spray applications to enhance infection rates and successfully control <i>D. maidis</i> populations.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01823-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The corn leafhopper, Dalbulus maidis (Hemiptera, Cicadellidae), is an important pest of maize in Latin America, transmitting plant pathogens that impact grain production. Recently, mycopesticides have been considered as an alternative for the biological control of D. maidis populations, but there is controversy surrounding the efficacy of these products. We assessed the susceptibility of D. maidis to invertebrate-pathogenic fungi and, for the first time, investigated the protective role of the protein-lipid coat of brochosomes on the insect integument as a barrier against infections. Adult mortality was lower than 35% seven days after exposure to maize plants sprayed with water + surfactant-based conidia suspensions of 31 fungal strains from three different genera (Beauveria, Cordyceps and Metarhizium). Direct application of conidia suspensions on adults did not increase significantly the mortality rates when compared to adults exposed to contaminated surfaces. Conidia in water + surfactant readily adhered and germinated on detached forewings of D. maidis from which brochosomes were removed, but wings coated with this protein-lipid layer repelled droplets. Dry conidia easily adhered to brochosome-coated wings and their germination was not affected, although the methodical self-cleaning behavior of the adults effectively dislodged most conidia (either in suspensions or as a dry powder) from insect’s body after treatment. In conclusion, brochosomes and self-cleaning together efficiently prevent adhesion of conidia to D. maidis cuticle, serving as important barriers against fungal invasion and decreasing insect mortality. Our study highlights the importance of combining mycopesticides with effective adjuvants in spray applications to enhance infection rates and successfully control D. maidis populations.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.