Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes

IF 15.8 1区 生物学 Q1 PLANT SCIENCES
Xiaofei Zeng, Zili Yi, Xingtan Zhang, Yuhui Du, Yu Li, Zhiqing Zhou, Sijie Chen, Huijie Zhao, Sai Yang, Yibin Wang, Guoan Chen
{"title":"Chromosome-level scaffolding of haplotype-resolved assemblies using Hi-C data without reference genomes","authors":"Xiaofei Zeng, Zili Yi, Xingtan Zhang, Yuhui Du, Yu Li, Zhiqing Zhou, Sijie Chen, Huijie Zhao, Sai Yang, Yibin Wang, Guoan Chen","doi":"10.1038/s41477-024-01755-3","DOIUrl":null,"url":null,"abstract":"Scaffolding is crucial for constructing most chromosome-level genomes. The high-throughput chromatin conformation capture (Hi-C) technology has become the primary scaffolding strategy due to its convenience and cost-effectiveness. As sequencing technologies and assembly algorithms advance, constructing haplotype-resolved genomes is increasingly preferred because haplotypes can provide additional genetic information on allelic and non-allelic variations. ALLHiC is a widely used allele-aware scaffolding tool designed for this purpose. However, its dependence on chromosome-level reference genomes and a higher chromosome misassignment rate still impede the unravelling of haplotype-resolved genomes. Here we present HapHiC, a reference-independent allele-aware scaffolding tool with superior performance on chromosome assignment as well as contig ordering and orientation. In addition, we provide new insights into the challenges in allele-aware scaffolding by conducting comprehensive analyses on various adverse factors. Finally, with the help of HapHiC, we constructed the haplotype-resolved allotriploid genome for Miscanthus × giganteus, an important lignocellulosic bioenergy crop. This study uncovers key challenges in allele-aware genome scaffolding with Hi-C data. A reference-independent Hi-C scaffolder showing superior performance was developed to construct the haplotype-resolved genome of triploid Miscanthus × giganteus.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01755-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Scaffolding is crucial for constructing most chromosome-level genomes. The high-throughput chromatin conformation capture (Hi-C) technology has become the primary scaffolding strategy due to its convenience and cost-effectiveness. As sequencing technologies and assembly algorithms advance, constructing haplotype-resolved genomes is increasingly preferred because haplotypes can provide additional genetic information on allelic and non-allelic variations. ALLHiC is a widely used allele-aware scaffolding tool designed for this purpose. However, its dependence on chromosome-level reference genomes and a higher chromosome misassignment rate still impede the unravelling of haplotype-resolved genomes. Here we present HapHiC, a reference-independent allele-aware scaffolding tool with superior performance on chromosome assignment as well as contig ordering and orientation. In addition, we provide new insights into the challenges in allele-aware scaffolding by conducting comprehensive analyses on various adverse factors. Finally, with the help of HapHiC, we constructed the haplotype-resolved allotriploid genome for Miscanthus × giganteus, an important lignocellulosic bioenergy crop. This study uncovers key challenges in allele-aware genome scaffolding with Hi-C data. A reference-independent Hi-C scaffolder showing superior performance was developed to construct the haplotype-resolved genome of triploid Miscanthus × giganteus.

Abstract Image

Abstract Image

利用无参考基因组的 Hi-C 数据对单体型解析组装进行染色体级支架构建
支架对于构建大多数染色体级基因组至关重要。高通量染色质构象捕获(Hi-C)技术因其便利性和成本效益已成为主要的支架策略。随着测序技术和组装算法的进步,构建单倍型解析基因组越来越受到青睐,因为单倍型可以提供等位基因和非等位基因变异的额外遗传信息。ALLHiC 就是为此目的而设计的一种广泛使用的等位基因感知支架工具。然而,它对染色体级参考基因组的依赖性和较高的染色体错配率仍然阻碍着单倍型解析基因组的解开。在这里,我们介绍一种独立于参考的等位基因感知脚手架工具 HapHiC,它在染色体分配、等位基因排序和定向方面都有卓越的表现。此外,我们还对各种不利因素进行了全面分析,从而对等位基因感知搭架的挑战提出了新的见解。最后,在 HapHiC 的帮助下,我们构建了重要木质纤维素生物能源作物 Miscanthus × giganteus 的单倍型解析异源三倍体基因组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信