Base Metals Induced Oxygen Migration and Adjustable Performance in Multifunctional Oxide Heterojunction Devices

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miaoqian Yang, Yukuai Liu, Guangzheng Chen, Jiahui Ou, Jiazhi Peng, Haoliang Huang, Xierong Zeng, Chi Wah Leung, Chuanwei Huang
{"title":"Base Metals Induced Oxygen Migration and Adjustable Performance in Multifunctional Oxide Heterojunction Devices","authors":"Miaoqian Yang,&nbsp;Yukuai Liu,&nbsp;Guangzheng Chen,&nbsp;Jiahui Ou,&nbsp;Jiazhi Peng,&nbsp;Haoliang Huang,&nbsp;Xierong Zeng,&nbsp;Chi Wah Leung,&nbsp;Chuanwei Huang","doi":"10.1002/adfm.202408030","DOIUrl":null,"url":null,"abstract":"<p>The chemical and electronic interactions at metal/oxide heterojunctions is pivotal in determining the electronic properties of oxide devices utilized in microelectronics, catalysis, and photovoltaic systems. In this study, interfacial oxidation migrations within a model heterostructure system, consisting of a La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> film overlaid by various metallic (Ti, Al, Cu, Ag, and Au) ultrathin layers are systematically investigated. It is experimentally demonstrated that at elevated deposition temperature, the oxygen-active ultrathin overlayers of base metals such as Ti and Al significantly derive oxygen from the underlying La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> film, inducing a perovskite to brownmillerite phase transition in the underlying functional oxide film. Conversely, no structural transitions are observed for La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> film when it is capped by noble metals (Au, Ag), which possess relative high oxidation formation energy. These observations are crucial for the development of novel crystalline and electronic architectures in metal/oxide heterostructures, offering a refined approach to modulate interfacial reactivity without compromising the functionality of oxide-based heterojunction devices.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 46","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202408030","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The chemical and electronic interactions at metal/oxide heterojunctions is pivotal in determining the electronic properties of oxide devices utilized in microelectronics, catalysis, and photovoltaic systems. In this study, interfacial oxidation migrations within a model heterostructure system, consisting of a La0.7Sr0.3MnO3 film overlaid by various metallic (Ti, Al, Cu, Ag, and Au) ultrathin layers are systematically investigated. It is experimentally demonstrated that at elevated deposition temperature, the oxygen-active ultrathin overlayers of base metals such as Ti and Al significantly derive oxygen from the underlying La0.7Sr0.3MnO3 film, inducing a perovskite to brownmillerite phase transition in the underlying functional oxide film. Conversely, no structural transitions are observed for La0.7Sr0.3MnO3 film when it is capped by noble metals (Au, Ag), which possess relative high oxidation formation energy. These observations are crucial for the development of novel crystalline and electronic architectures in metal/oxide heterostructures, offering a refined approach to modulate interfacial reactivity without compromising the functionality of oxide-based heterojunction devices.

Abstract Image

Abstract Image

基底金属诱导的氧迁移与多功能氧化物异质结器件的可调性能
金属/氧化物异质结的化学和电子相互作用在决定微电子、催化和光伏系统中使用的氧化物器件的电子特性方面至关重要。在本研究中,我们系统地研究了由 La0.7Sr0.3MnO3 薄膜叠加各种金属(钛、铝、铜、银和金)超薄层组成的异质结构模型系统中的界面氧化迁移。实验证明,在较高的沉积温度下,钛和铝等贱金属的氧活性超薄覆盖层会从底层 La0.7Sr0.3MnO3 薄膜中大量获得氧气,从而诱导底层功能氧化物薄膜发生从透辉石到褐闪石的相变。相反,当 La0.7Sr0.3MnO3 薄膜被贵金属(金、银)覆盖时,则没有观察到结构转变,而贵金属具有相对较高的氧化形成能。这些观察结果对于开发金属/氧化物异质结构中的新型晶体和电子结构至关重要,为调节界面反应性而又不损害基于氧化物的异质结器件的功能性提供了一种精细的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信