A numerical framework for modeling 3D electrostrictive dielectric elastomer actuators

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"A numerical framework for modeling 3D electrostrictive dielectric elastomer actuators","authors":"","doi":"10.1016/j.compstruc.2024.107495","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we have developed a numerical framework to investigate the effects of the electrostriction phenomenon on the deformations of three-dimensional dielectric elastomer actuators with complex geometries and inhomogeneous displacement fields at finite strains. The finite element method has been used to solve the governing equations. In this investigation, we adopt one of the most complete constitutive equations with regard to the electrostrictive behavior of dielectric elastomers which is capable of analyzing general three-dimensional states of deformation. The terms emerging in the tangent stiffness matrix as a result of the electrostrictive model are fully derived in this study. The implementation of the finite element modeling is conducted via an in-house computer code. Three three-dimensional actuators, namely a bending actuator, a buckling actuator, and a torsional actuator are selected to demonstrate the capabilities of the numerical framework. In conclusion, we have proved that the electrostriction phenomenon is effective in terms of improving the performance of dielectric elastomer actuators and in lowering their operating voltage. Moreover, the relationship of the diagonal entries of the permittivity tensor and the left Cauchy-Green tensor have been depicted on the deformed bodies of the actuators.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924002244","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we have developed a numerical framework to investigate the effects of the electrostriction phenomenon on the deformations of three-dimensional dielectric elastomer actuators with complex geometries and inhomogeneous displacement fields at finite strains. The finite element method has been used to solve the governing equations. In this investigation, we adopt one of the most complete constitutive equations with regard to the electrostrictive behavior of dielectric elastomers which is capable of analyzing general three-dimensional states of deformation. The terms emerging in the tangent stiffness matrix as a result of the electrostrictive model are fully derived in this study. The implementation of the finite element modeling is conducted via an in-house computer code. Three three-dimensional actuators, namely a bending actuator, a buckling actuator, and a torsional actuator are selected to demonstrate the capabilities of the numerical framework. In conclusion, we have proved that the electrostriction phenomenon is effective in terms of improving the performance of dielectric elastomer actuators and in lowering their operating voltage. Moreover, the relationship of the diagonal entries of the permittivity tensor and the left Cauchy-Green tensor have been depicted on the deformed bodies of the actuators.

三维电致伸缩介电弹性体致动器建模的数值框架
在本文中,我们开发了一个数值框架,用于研究电致伸缩现象对具有复杂几何形状和不均匀位移场的三维介电弹性体致动器在有限应变下的变形影响。有限元法用于求解支配方程。在这项研究中,我们采用了介电弹性体电致伸缩行为方面最完整的构成方程之一,该方程能够分析一般的三维变形状态。本研究全面推导了电致伸缩模型在切线刚度矩阵中出现的项。有限元建模是通过内部计算机代码实现的。我们选择了三个三维致动器,即弯曲致动器、屈曲致动器和扭转致动器,以展示数值框架的能力。总之,我们证明了电致伸缩现象能有效改善介电弹性体致动器的性能并降低其工作电压。此外,我们还在致动器的变形体上描绘了介电常数张量和左考奇-格林张量对角线项的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信