{"title":"Establishing reflex test rules for platelet fluorescent counting method using machine learning models on Sysmex XN-series hematology analyzer.","authors":"Zhengyu Zhou, Mengqiao Guo, Kang Wu, Zhanyi Yue","doi":"10.1111/ijlh.14353","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The platelet fluorescent counting (PLT-F) method is utilized as a reflex test method following the initial test of the platelet impedance counting (PLT-I) method in clinical practice on the Sysmex XN-series automated hematology analyzer. Our aim is to establish reflex test rules for the PLT-F method by combining multiple parameters provided by the \"CBC + DIFF\" mode of the Sysmex XN-series automated hematology analyzer.</p><p><strong>Methods: </strong>We tested 120 samples to evaluate the baseline bias between the PLT-F and PLT-I methods. Then, we selected 1256 samples to establish and test reflex test rules using seven machine learning models (decision Tree, random forest, neural network, logistic regression, k-nearest neighbor, support vector machine, and Naive Bayes). The training set and test set were divided at a ratio of 7:3. We evaluated the performance of machine learning models on the test set using various metrics to select the most valuable model.</p><p><strong>Results: </strong>The PLT-F method exhibited a high degree of correlation with the PLT-I method (r = 0.998). The random forest model emerged as the most valuable, boasting an accuracy of 0.893, an area under the curve of 0.954, an F1 score of 0.771, a recall of 0.719, a precision of 0.831, and a specificity of 0.950. The most important variable in the random forest model was mean cell volume, weighted at 15.09%.</p><p><strong>Conclusion: </strong>The random forest model, which demonstrated high efficiency in our study, can be used to establish PLT reflex test rules based on the PLT-F method for the Sysmex XN-series automated hematology analyzer.</p>","PeriodicalId":94050,"journal":{"name":"International journal of laboratory hematology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of laboratory hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/ijlh.14353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The platelet fluorescent counting (PLT-F) method is utilized as a reflex test method following the initial test of the platelet impedance counting (PLT-I) method in clinical practice on the Sysmex XN-series automated hematology analyzer. Our aim is to establish reflex test rules for the PLT-F method by combining multiple parameters provided by the "CBC + DIFF" mode of the Sysmex XN-series automated hematology analyzer.
Methods: We tested 120 samples to evaluate the baseline bias between the PLT-F and PLT-I methods. Then, we selected 1256 samples to establish and test reflex test rules using seven machine learning models (decision Tree, random forest, neural network, logistic regression, k-nearest neighbor, support vector machine, and Naive Bayes). The training set and test set were divided at a ratio of 7:3. We evaluated the performance of machine learning models on the test set using various metrics to select the most valuable model.
Results: The PLT-F method exhibited a high degree of correlation with the PLT-I method (r = 0.998). The random forest model emerged as the most valuable, boasting an accuracy of 0.893, an area under the curve of 0.954, an F1 score of 0.771, a recall of 0.719, a precision of 0.831, and a specificity of 0.950. The most important variable in the random forest model was mean cell volume, weighted at 15.09%.
Conclusion: The random forest model, which demonstrated high efficiency in our study, can be used to establish PLT reflex test rules based on the PLT-F method for the Sysmex XN-series automated hematology analyzer.