Di Ye , Shuang Zhou , Xinyu Dai , Huanji Xu, Qiulin Tang, Huixi Huang, Feng Bi
{"title":"Targeting the MHC-I endosomal-lysosomal trafficking pathway in cancer: From mechanism to immunotherapy","authors":"Di Ye , Shuang Zhou , Xinyu Dai , Huanji Xu, Qiulin Tang, Huixi Huang, Feng Bi","doi":"10.1016/j.bbcan.2024.189161","DOIUrl":null,"url":null,"abstract":"<div><p>Immune checkpoint blockade (ICB) therapy has achieved broad applicability and durable clinical responses across cancer types. However, the overall response rate remains suboptimal because some patients do not respond or develop drug resistance. The low infiltration of CD8<sup>+</sup> cytotoxic T cells (CTLs) in the tumor microenvironment due to insufficient antigen presentation is closely related to the innate resistance to ICB. The duration and spatial distribution of major histocompatibility complex class I (MHC-I) expression on the cell surface is critical for the efficient presentation of endogenous tumor antigens and subsequent recognition and clearance by CTLs. Tumor cells reduce the surface expression of MHC-I via multiple mechanisms to impair antigen presentation pathways and evade immunity and/or develop resistance to ICB therapy. As an increasing number of studies have focused on membrane MHC-I trafficking and degradation in tumor cells, which may impact the effectiveness of tumor immunotherapy. It is necessary to summarize the mechanism regulating membrane MHC-I translocation into the cytoplasm and degradation via the lysosome. We reviewed recent advances in the understanding of endosomal-lysosomal MHC-I transport and highlighted the means exploited by tumor cells to evade detection and clearance by CTLs. We also summarized new therapeutic strategies targeting these pathways to enhance classical ICB treatment and provide new avenues for optimizing cancer immunotherapy.</p></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1879 5","pages":"Article 189161"},"PeriodicalIF":9.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X24000921","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune checkpoint blockade (ICB) therapy has achieved broad applicability and durable clinical responses across cancer types. However, the overall response rate remains suboptimal because some patients do not respond or develop drug resistance. The low infiltration of CD8+ cytotoxic T cells (CTLs) in the tumor microenvironment due to insufficient antigen presentation is closely related to the innate resistance to ICB. The duration and spatial distribution of major histocompatibility complex class I (MHC-I) expression on the cell surface is critical for the efficient presentation of endogenous tumor antigens and subsequent recognition and clearance by CTLs. Tumor cells reduce the surface expression of MHC-I via multiple mechanisms to impair antigen presentation pathways and evade immunity and/or develop resistance to ICB therapy. As an increasing number of studies have focused on membrane MHC-I trafficking and degradation in tumor cells, which may impact the effectiveness of tumor immunotherapy. It is necessary to summarize the mechanism regulating membrane MHC-I translocation into the cytoplasm and degradation via the lysosome. We reviewed recent advances in the understanding of endosomal-lysosomal MHC-I transport and highlighted the means exploited by tumor cells to evade detection and clearance by CTLs. We also summarized new therapeutic strategies targeting these pathways to enhance classical ICB treatment and provide new avenues for optimizing cancer immunotherapy.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.