Left ventricular structural integrity on tetralogy of Fallot patients: approach using longitudinal relaxation time mapping.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2024-07-01 Epub Date: 2024-08-01 DOI:10.1117/1.JMI.11.4.044004
Giorgos Broumpoulis, Efstratios Karavasilis, Niki Lama, Ioannis Papadopoulos, Panagiotis Zachos, Sotiria Apostolopoulou, Nikolaos Kelekis
{"title":"Left ventricular structural integrity on tetralogy of Fallot patients: approach using longitudinal relaxation time mapping.","authors":"Giorgos Broumpoulis, Efstratios Karavasilis, Niki Lama, Ioannis Papadopoulos, Panagiotis Zachos, Sotiria Apostolopoulou, Nikolaos Kelekis","doi":"10.1117/1.JMI.11.4.044004","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Tetralogy of Fallot (TOF) is a congenital heart disease, and patients undergo surgical repair early in their lives. The evaluation of TOF patients is continuous through their adulthood. The use of cardiac magnetic resonance imaging (CMR) is vital for the evaluation of TOF patients. We aim to correlate advanced MRI sequences [parametric longitudinal relaxation time (T1), extracellular volume (ECV) mapping] with cardiac functionality to provide biomarkers for the evaluation of these patients.</p><p><strong>Methods: </strong>A complete CMR examination with the same imaging protocol was conducted in a total of 11 TOF patients and a control group of 25 healthy individuals. A Modified Look-Locker Inversion recovery (MOLLI) sequence was included to acquire the global T1 myocardial relaxation times of the left ventricular (LV) pre and post-contrast administration. Appropriate software (Circle cmr42) was used for the CMR analysis and the calculation of native, post-contrast T1, and ECV maps. A regression analysis was conducted for the correlation between global LV T1 values and right ventricular (RV) functional indices.</p><p><strong>Results: </strong>Statistically significant results were obtained for RV cardiac index [RV_CI= -32.765 + 0.029 × T1 native; <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.003</mn></mrow> </math> ], RV end diastolic volume [RV_EDV/BSA = -1023.872 + 0.902 × T1 native; <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.001</mn></mrow> </math> ], and RV end systolic volume [RV_ESV/BSA = -536.704 + 0.472 × T1 native; <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.011</mn></mrow> </math> ].</p><p><strong>Conclusions: </strong>We further support the diagnostic importance of T1 mapping as a structural imaging tool in CMR. In addition to the well-known affected RV function in TOF patients, the LV structure is also impaired as there is a strong correlation between LV T1 mapping and RV function, evoking that the heart operates as an entity.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.044004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Tetralogy of Fallot (TOF) is a congenital heart disease, and patients undergo surgical repair early in their lives. The evaluation of TOF patients is continuous through their adulthood. The use of cardiac magnetic resonance imaging (CMR) is vital for the evaluation of TOF patients. We aim to correlate advanced MRI sequences [parametric longitudinal relaxation time (T1), extracellular volume (ECV) mapping] with cardiac functionality to provide biomarkers for the evaluation of these patients.

Methods: A complete CMR examination with the same imaging protocol was conducted in a total of 11 TOF patients and a control group of 25 healthy individuals. A Modified Look-Locker Inversion recovery (MOLLI) sequence was included to acquire the global T1 myocardial relaxation times of the left ventricular (LV) pre and post-contrast administration. Appropriate software (Circle cmr42) was used for the CMR analysis and the calculation of native, post-contrast T1, and ECV maps. A regression analysis was conducted for the correlation between global LV T1 values and right ventricular (RV) functional indices.

Results: Statistically significant results were obtained for RV cardiac index [RV_CI= -32.765 + 0.029 × T1 native; p = 0.003 ], RV end diastolic volume [RV_EDV/BSA = -1023.872 + 0.902 × T1 native; p = 0.001 ], and RV end systolic volume [RV_ESV/BSA = -536.704 + 0.472 × T1 native; p = 0.011 ].

Conclusions: We further support the diagnostic importance of T1 mapping as a structural imaging tool in CMR. In addition to the well-known affected RV function in TOF patients, the LV structure is also impaired as there is a strong correlation between LV T1 mapping and RV function, evoking that the heart operates as an entity.

法洛氏四联症患者左心室结构完整性:纵向弛豫时间绘图法。
目的:法洛氏四联症(TOF)是一种先天性心脏病,患者在生命的早期就要接受手术修复。对 TOF 患者的评估一直持续到其成年。使用心脏磁共振成像(CMR)对评估 TOF 患者至关重要。我们的目标是将先进的磁共振成像序列(参数纵向弛豫时间(T1)、细胞外容积(ECV)绘图)与心脏功能相关联,为评估这些患者提供生物标志物:方法: 对 11 名 TOF 患者和 25 名健康人组成的对照组进行了完整的 CMR 检查,并采用相同的成像方案。采用改良锁相反转恢复(MOLLI)序列获取造影前后左心室(LV)的全局 T1 心肌弛豫时间。使用适当的软件(Circle cmr42)进行 CMR 分析并计算原始、对比后 T1 和 ECV 图。对整体左心室 T1 值与右心室功能指数之间的相关性进行了回归分析:结果:右心室心脏指数[RV_CI= -32.765 + 0.029 × T1 native; p = 0.003 ]、右心室舒张末期容积[RV_EDV/BSA = -1023.872 + 0.902 × T1 native; p = 0.001 ]和右心室收缩末期容积[RV_ESV/BSA = -536.704 + 0.472 × T1 native; p = 0.011 ]具有统计学意义:我们进一步证实了 T1 图谱作为 CMR 结构成像工具在诊断方面的重要性。除了众所周知的 TOF 患者 RV 功能受到影响外,左心室结构也受到损害,因为左心室 T1 图谱与 RV 功能之间存在很强的相关性,这表明心脏是作为一个整体运行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信