Computed tomography-based radiomics and clinical-genetic features for brain metastasis prediction in patients with stage III/IV epidermal growth factor receptor-mutant non-small-cell lung cancer.
Mei Zheng, Xiaorong Sun, Haoran Qi, Mingzhu Zhang, Ligang Xing
{"title":"Computed tomography-based radiomics and clinical-genetic features for brain metastasis prediction in patients with stage III/IV epidermal growth factor receptor-mutant non-small-cell lung cancer.","authors":"Mei Zheng, Xiaorong Sun, Haoran Qi, Mingzhu Zhang, Ligang Xing","doi":"10.1111/1759-7714.15410","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the value of computed tomography (CT)-based radiomics combined with clinical-genetic features in predicting brain metastasis in patients with stage III/IV epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC).</p><p><strong>Methods: </strong>The study included 147 eligible patients treated at our institution between January 2018 and May 2021. Patients were randomly divided into two cohorts for model training (n = 102) and validation (n = 45). Radiomics features were extracted from the chest CT images before treatment, and a radiomics signature was constructed using the Least Absolute Shrinkage and Selection Operator regression. Kaplan-Meier survival analysis was used to describe the differences in brain metastasis-free survival (BM-FS) risk. A clinical-genetic model was developed using Cox regression analysis. Radiomics, genetic, and combined prediction models were constructed, and their predictive performances were evaluated by the concordance index (C-index).</p><p><strong>Results: </strong>Patients with a low radiomics score had significantly longer BM-FS than those with a high radiomics score in both the training (p < 0.0001) and the validation (p = 0.0016) cohorts. The C-indices of the nomogram, which combined the radiomics signature and N stage, overall stage, third-generation tyrosine kinase inhibitor treatment, and EGFR mutation status, were 0.886 (95% confidence interval [CI] 0.823-0.949) and 0.811 (95% CI 0.719-0.903) in the training and validation cohorts, respectively. The combined model achieved a higher discrimination and clinical utility than the single prediction models.</p><p><strong>Conclusions: </strong>The combined radiomics-genetic model could be used to predict BM-FS in stage III/IV NSCLC patients with EGFR mutations.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":" ","pages":"1919-1928"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.15410","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the value of computed tomography (CT)-based radiomics combined with clinical-genetic features in predicting brain metastasis in patients with stage III/IV epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC).
Methods: The study included 147 eligible patients treated at our institution between January 2018 and May 2021. Patients were randomly divided into two cohorts for model training (n = 102) and validation (n = 45). Radiomics features were extracted from the chest CT images before treatment, and a radiomics signature was constructed using the Least Absolute Shrinkage and Selection Operator regression. Kaplan-Meier survival analysis was used to describe the differences in brain metastasis-free survival (BM-FS) risk. A clinical-genetic model was developed using Cox regression analysis. Radiomics, genetic, and combined prediction models were constructed, and their predictive performances were evaluated by the concordance index (C-index).
Results: Patients with a low radiomics score had significantly longer BM-FS than those with a high radiomics score in both the training (p < 0.0001) and the validation (p = 0.0016) cohorts. The C-indices of the nomogram, which combined the radiomics signature and N stage, overall stage, third-generation tyrosine kinase inhibitor treatment, and EGFR mutation status, were 0.886 (95% confidence interval [CI] 0.823-0.949) and 0.811 (95% CI 0.719-0.903) in the training and validation cohorts, respectively. The combined model achieved a higher discrimination and clinical utility than the single prediction models.
Conclusions: The combined radiomics-genetic model could be used to predict BM-FS in stage III/IV NSCLC patients with EGFR mutations.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.