A novel liposomal formulation for ocular delivery of caspofungin: an experimental study by quality by design-based approach.

IF 3 Q2 PHARMACOLOGY & PHARMACY
Therapeutic delivery Pub Date : 2024-01-01 Epub Date: 2024-08-05 DOI:10.1080/20415990.2024.2379756
Mercy Macwan, Himanshu Paliwal, Bhupendra G Prajapati
{"title":"A novel liposomal formulation for ocular delivery of caspofungin: an experimental study by quality by design-based approach.","authors":"Mercy Macwan, Himanshu Paliwal, Bhupendra G Prajapati","doi":"10.1080/20415990.2024.2379756","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> This study focuses on the development of a Caspofungin liposome for efficient ocular delivery by enhancing corneal penetration.<b>Method:</b> Quality by design (QbD) approach was adopted to identify critical factors that influence final liposomal formulation. The liposome developed using thin film hydration after optimization was subjected to characterization for physicochemical properties, irritation potential and corneal uptake.<b>Results:</b> The numerical optimization suggests an optimal formulation with a desirability value of 0.706, using CQAs as optimization goals with 95% prediction intervals. The optimized formulation showed no signs of irritation potential along with observation of significant corneal permeation.<b>Conclusion:</b> The liposomal formulation increased the permeability of Caspofungin, which could enhance the efficacy for the treatment of conditions, like fungal keratitis.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"667-683"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2024.2379756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This study focuses on the development of a Caspofungin liposome for efficient ocular delivery by enhancing corneal penetration.Method: Quality by design (QbD) approach was adopted to identify critical factors that influence final liposomal formulation. The liposome developed using thin film hydration after optimization was subjected to characterization for physicochemical properties, irritation potential and corneal uptake.Results: The numerical optimization suggests an optimal formulation with a desirability value of 0.706, using CQAs as optimization goals with 95% prediction intervals. The optimized formulation showed no signs of irritation potential along with observation of significant corneal permeation.Conclusion: The liposomal formulation increased the permeability of Caspofungin, which could enhance the efficacy for the treatment of conditions, like fungal keratitis.

一种用于眼部给药卡泊芬净的新型脂质体配方:基于设计质量方法的实验研究。
目的:本研究的重点是开发一种卡泊芬净脂质体,通过增强角膜穿透力实现高效的眼部给药。研究方法:采用质量源于设计(QbD)的方法确定影响脂质体最终配方的关键因素。对优化后的薄膜水合脂质体进行了理化性质、刺激潜力和角膜吸收表征。结果:数值优化结果表明,以 CQA 为优化目标,最佳配方的可取值为 0.706,预测区间为 95%。优化后的配方没有显示出潜在的刺激性,同时观察到明显的角膜渗透性。结论脂质体配方增加了卡泊芬净的渗透性,可提高治疗真菌性角膜炎等疾病的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Therapeutic delivery
Therapeutic delivery PHARMACOLOGY & PHARMACY-
CiteScore
5.50
自引率
0.00%
发文量
25
期刊介绍: Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信