{"title":"SARS-CoV-2 co-detection with other respiratory pathogens-descriptive epidemiological study","authors":"","doi":"10.1016/j.resinv.2024.07.016","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Co-detection of respiratory pathogens with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood. This descriptive epidemiological study aimed to determine the effect of the interaction of different respiratory pathogens on clinical variables.</p></div><div><h3>Methods</h3><p>We retrospectively reviewed the results of comprehensive multiplex polymerase chain reaction (PCR) testing from November 2020 to March 2023 to estimate respiratory pathogen co-detection rates in Shinjuku, Tokyo. We evaluated the interactions of respiratory pathogens, particularly SARS-CoV-2, between observed and expected co-detection. We estimated the trend of co-detection with SARS-CoV-2 in terms of age and sex and applied a multiple logistic regression model adjusted for age, testing period, and sex to identify influencing factors between co-detection and single detection for each pathogen.</p></div><div><h3>Results</h3><p>Among 57,746 patients who underwent multiplex PCR testing, 10,516 (18.2%) had positive for at least one of the 22 pathogens. Additionally, 881 (1.5%) patients were confirmed to have a co-detection. SARS-CoV-2 exhibited negative interactions with adenovirus, coronavirus, human metapneumovirus, parainfluenza virus, respiratory syncytial virus, and rhino/enterovirus. SARS-CoV-2 co-detection with other pathogens occurred most frequently in patients of the youngest age group (0–4 years). A multiple logistic regression model indicated that younger age was the most influential factor for SARS-CoV-2 co-detection with other respiratory pathogens.</p></div><div><h3>Conclusion</h3><p>The study highlights the prevalence of SARS-CoV-2 co-detection with other respiratory pathogens in younger age groups, necessitating further exploration of the clinical implications and severity of SARS-CoV-2 co-detection.</p></div>","PeriodicalId":20934,"journal":{"name":"Respiratory investigation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212534524001175/pdfft?md5=85ff8f1d064fbd93d08980a87516c3e1&pid=1-s2.0-S2212534524001175-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory investigation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212534524001175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Co-detection of respiratory pathogens with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood. This descriptive epidemiological study aimed to determine the effect of the interaction of different respiratory pathogens on clinical variables.
Methods
We retrospectively reviewed the results of comprehensive multiplex polymerase chain reaction (PCR) testing from November 2020 to March 2023 to estimate respiratory pathogen co-detection rates in Shinjuku, Tokyo. We evaluated the interactions of respiratory pathogens, particularly SARS-CoV-2, between observed and expected co-detection. We estimated the trend of co-detection with SARS-CoV-2 in terms of age and sex and applied a multiple logistic regression model adjusted for age, testing period, and sex to identify influencing factors between co-detection and single detection for each pathogen.
Results
Among 57,746 patients who underwent multiplex PCR testing, 10,516 (18.2%) had positive for at least one of the 22 pathogens. Additionally, 881 (1.5%) patients were confirmed to have a co-detection. SARS-CoV-2 exhibited negative interactions with adenovirus, coronavirus, human metapneumovirus, parainfluenza virus, respiratory syncytial virus, and rhino/enterovirus. SARS-CoV-2 co-detection with other pathogens occurred most frequently in patients of the youngest age group (0–4 years). A multiple logistic regression model indicated that younger age was the most influential factor for SARS-CoV-2 co-detection with other respiratory pathogens.
Conclusion
The study highlights the prevalence of SARS-CoV-2 co-detection with other respiratory pathogens in younger age groups, necessitating further exploration of the clinical implications and severity of SARS-CoV-2 co-detection.